PF: The OpenBSD Packet Filter

OpenBSD

L anguage: en [teams]
cs fr nl

[up to FAQ] [Next: Getting Started)]

PF: The OpenBSD Packet Filter

Table of Contents

Basic Configuration
o Getting Started

o Listsand Macros

o Tables

o Packet Filtering

o Network Address Trandation

o Traffic Redirection (Port Forwarding)
o Shortcuts For Creating Rulesets

. Advanced Configuration
o Runtime Options

o Anchors
o Packet Queueing and Prioritization
o Address Pools and Load Balancing
o Packet Tagging (Policy Filtering)
. Additional Topics
» Logging
o Performance
o Issueswith FTP
o Authpf: User Shell for Authenticating Gateways
o Firewall Redundancy with CARP and pfsync

. Example Rulesets
o Firewall for Home or Small Office

http://www.openbsd.org/fag/pf/index.html (1 of 2)9/4/2011 10:04:16 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/translation.html
http://www.openbsd.org/faq/pf/cs/index.html
http://www.openbsd.org/faq/pf/fr/index.html
http://www.openbsd.org/faq/pf/nl/index.html
http://www.openbsd.org/faq/index.html

PF: The OpenBSD Packet Filter

Packet Filter (from here on referred to as PF) is OpenBSD's system for filtering TCP/IP traffic and doing
Network Address Trandation. PF is also capable of normalizing and conditioning TCP/IP traffic and
providing bandwidth control and packet prioritization. PF has been a part of the GENERIC OpenBSD
kernel since OpenBSD 3.0. Previous OpenBSD releases used a different firewall/NAT package whichis
no longer supported.

PF was originally developed by Daniel Hartmeier and is now maintained and developed by the entire
OpenBSD team.

This set of documents, also available in PDF format, isintended as a general introduction to the PF

system as run on OpenBSD. Even if it coversall of PF's mgjor features, it is only intended to be used as
a supplement to the man pages, and not as a replacement for them.

For a complete and in-depth view of what PF can do, please start by reading the pf(4) man page.

Aswith the rest of the FAQ, this set of documentsis focused on users of OpenBSD 4.9. As PF isaways
growing and developing, there are changes and enhancements between the 4.9-release version and the
version in OpenBSD-current as well as differences between 4.9 and earlier versions. The reader is
advised to see the man pages for the version of OpenBSD they are currently working with. In
particular, thereare significant differences between 4.6 and 4.7.

[up to FAQ] [Next: Getting Started)]

ﬁ www@openbsd.org
$OpenBSD: index.html,v 1.52 2011/05/01 12:57:11 nick Exp $

http://ww.openbsd.org/fag/pf/index.html (2 of 2)9/4/2011 10:04:16 AM

ftp://ftp.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf
http://www.openbsd.org/cgi-bin/man.cgi
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/49.html
http://www.openbsd.org/faq/index.html
http://www.openbsd.org/faq/index.html
mailto:www@openbsd.org

PF: Getting Started

OpenBSD

[Contents] [Next: Lists and Macros]

PF: Getting Started

Table of Contents

. Activation
. Configuration
. Control

Activation
PF is enabled by default. If you wish to disable it on boot, add the line
pf =NO

to thefile /etc/rc.conf.local and reboot your system to have it take effect.

Y ou can also manually activate and deactivate PF by using the pfctl(8) program:

pfctl -e
pfctl -d

to enable and disable, respectively. Note that this just enables or disables PF, it doesn't actually load a
ruleset. The ruleset must be loaded separately, either before or after PF is enabled.

Configuration

PF reads its configuration rulesfrom/ et ¢/ pf . conf at boot time, as loaded by the rc scripts. Note
that while/ et c/ pf . conf isthe default and isloaded by the system rc scripts, it isjust atext file
loaded and interpreted by pfctl(8) and inserted into pf(4). For some applications, other rulesets may be

http://www.openbsd.org/fag/pf/config.html (1 of 2)9/4/2011 10:04:19 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rc.conf.local&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=rc&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.9

PF: Getting Started

loaded from other files after boot. Aswith any well designed Unix application, PF offers great
flexibility.

The pf . conf file hasfive parts:

. Macros. User-defined variables that can hold | P addresses, interface names, etc.

. Tables: A structure used to hold lists of |P addresses.

. Options: Various options to control how PF works.

. Queueing: Provides bandwidth control and packet prioritization.

. Filter Rules. Allows the selective filtering or blocking of packets as they pass through any of the

Interfaces.
Filter rules can be given parameters to specify network addresstrandation (NAT) and packet
redirection.

Blank lines are ignored, and lines beginning with # are treated as comments.

Control

After boot, PF operation can be managed using the pfctl(8) program. Some example commands are:

pfctl -f /etc/pf.conf Load the pf.conf file

pfctl -nf /[etc/pf.conf Parse the file, but don't load it
pfctl -sr Show the current rul eset

pfctl -ss Show the current state table

pfctl -si Show filter stats and counters

pfctl -sa Show EVERYTHING it can show

For a complete list of commands, please see the pfctl(8) man page.

[Contents] [Next: Lists and Macros]

& www@openbsd.org
$0penBSD: config.html,v 1.34 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/config.html (2 of 2)9/4/2011 10:04:19 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
mailto:www@openbsd.org

PF: Lists and Macros

OpenBSD

[Previous. Getting Started] [Contents] [Next: Tables]|

PF: Lists and Macros

Table of Contents

Lists

A list allows the specification of multiple similar criteriawithin arule. For example, multiple protocols,
port numbers, addresses, etc. S0, instead of writing one filter rule for each |P address that needs to be
blocked, one rule can be written by specifying the |P addressesin alist. Lists are defined by specifying
itemswithin{ } brackets.

When pfctl(8) encounters alist during loading of the ruleset, it creates multiple rules, one for each item
in the list. For example:

bl ock out on fxp0O from{ 192.168.0.1, 10.5.32.6 } to any
gets expanded to:

bl ock out on fxp0O from 192.168.0.1 to any
bl ock out on fxp0 from 10.5.32.6 to any

Multiple lists can be specified within arule:

match in on fxpO proto tcp to port { 22 80 } rdr-to

192.168. 0. 6

bl ock out on fxpO proto { tcp udp } from{ 192.168.0.1, \
10.5.32.6 } to any port { ssh telnet }

http://www.openbsd.org/fag/pf/macros.html (1 of 3)9/4/2011 10:04:21 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Lists and Macros

Note that the commas between list items are optional.
Lists can also contain nested lists:

trusted = "{ 192.168.1.2 192.168.5.36 }"
pass in inet proto tcp from{ 10.10.0.0/24 $trusted } to
port 22

Beware of constructs like the following, dubbed "negated lists", which are a common mistake:
pass in on fxp0 from{ 10.0.0.0/8, '10.1.2.3 }

While the intended meaning is usually to match "any address within 10.0.0.0/8, except for 10.1.2.3", the
rule expands to:

pass in on fxp0O from 10.0.0.0/8
pass in on fxp0 from!10.1.2.3

which matches any possible address. Instead, a table should be used.

Macros

Macros are user-defined variables that can hold IP addresses, port numbers, interface names, etc. Macros
can reduce the complexity of a PF ruleset and also make maintaining a ruleset much easier.

Macro names must start with aletter and may contain letters, digits, and underscores. Macro names
cannot be reserved words such as pass, out , or queue.

ext if = "fxp0"

block in on $ext if fromany to any

This creates amacro named ext i f . When amacro isreferred to after it's been created, its nameis
preceded with a$ character.

Macros can also expand to lists, such as:
friends = "{ 192.168.1.1, 10.0.2.5, 192.168.43.53 }"

Macros can be defined recursively. Since macros are not expanded within quotes the following syntax

http://www.openbsd.org/fag/pf/macros.html (2 of 3)9/4/2011 10:04:21 AM

PF: Lists and Macros

must be used:

host1l = "192.168.1.1"
host2 = "192.168.1. 2"
all _hosts = "{" $hostl $host2 "}"

Themacro $al | _host s now expandsto 192.168.1.1, 192.168.1.2.

[Previous: Getting Started] [Contents] [Next: Tables]

& www@openbsd.org
$OpenBSD: macros.html,v 1.28 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/macros.html (3 of 3)9/4/2011 10:04:21 AM

mailto:www@openbsd.org

PF: Tables

OpenBSD

[Previous. Lists and Macros] [Contents] [Next: Packet Filtering]

PF: Tables

Table of Contents

. Introduction

. Configuration

« Manipulating with pf ct |
. Specifying Addresses

. Address Matching

Introduction

A tableis used to hold agroup of 1Pv4 and/or IPv6 addresses. Lookups against atable are very fast and
consume less memory and processor time than lists. For this reason, atable isideal for holding alarge

group of addresses as the lookup time on atable holding 50,000 addresses is only slightly more than for
one holding 50 addresses. Tables can be used in the following ways:

. source and/or destination addressin rules.

. trandation and redirection addressesnat -t o and r dr - t o rule options, respectively.

. destination addressinr out e-t o, repl y-t o, and dup- t o rule options.

Tables are created either in pf . conf or by using pfctl(8).

Configuration

In pf . conf, tables are created using thet abl e directive. The following attributes may be specified
for each table:

. const - the contents of the table cannot be changed once the table is created. When this attribute
Is not specified, pfctl(8) may be used to add or remove addresses from the table at any time, even

http://www.openbsd.org/fag/pf/tables.html (1 of 4)9/4/2011 10:04:23 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Tables

when running with a securelevel (7) of two or greater.

. persi st - causesthe kernel to keep the table in memory even when no rulesrefer to it. Without
this attribute, the kernel will automatically remove the table when the last rule referencing it is
flushed.

Example:

t abl e <goodguys> { 192.0.2.0/24 }

table <rfcl1918> const { 192.168.0.0/16, 172.16.0.0/12, \
10.0.0.0/8 }

t abl e <spammrer s> persi st

bl ock in on fxp0 from{ <rfcl918>, <spammers> } to any
pass in on fxp0 from <goodguys> to any

Addresses can also be specified using the negation (or "not") modifier such as:
t abl e <goodguys> { 192.0.2.0/24, !'192.0.2.5 }
The goodguys table will now match al addresses in the 192.0.2.0/24 network except for 192.0.2.5.
Note that table names are always enclosed in < > angled brackets.
Tables can aso be populated from text files containing alist of |P addresses and networks:

tabl e <spammers> persist file "/etc/spamrers”

bl ock in on fxp0 from <spammers> to any

Thefile/ et ¢/ spamrer s would contain alist of |P addresses and/or CIDR network blocks, one per
line. Any line beginning with # is treated as a comment and ignored.

Manipulating with pf ct |

Tables can be manipulated on the fly by using pfctl(8). For instance, to add entries to the <spammers>
table created above:

pfctl -t spammers -T add 218.70.0.0/ 16

Thiswill also create the <spammers> table if it doesn't already exist. To list the addresses in atable:

http://www.openbsd.org/fag/pf/tables.html (2 of 4)9/4/2011 10:04:23 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=securelevel&sektion=7
http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Tables
pfctl -t spammers -T show

The - v argument can also be used with - Tshowto display statistics for each table entry. To remove
addresses from atable:

pfctl -t spammers -T delete 218.70.0.0/16

For more information on manipulating tables with pf ct | , please read the pfctl(8) manpage.

Specifying Addresses

In addition to being specified by IP address, hosts may also be specified by their hosthame. When the
hostname is resolved to an | P address, all resulting IPv4 and | Pv6 addresses are placed into the table. IP
addresses can aso be entered into atable by specifying avalid interface name, interface group, or the
sel f keyword. Thetable will then contain all IP addresses assigned to that interface or group, or to the
machine (including loopback addresses), respectively.

One limitation when specifying addressesisthat 0. 0. 0. 0/ 0 and O/ O will not work in tables. The
aternative is to hard code that address or use a macro.

Address Matching

An address |lookup against atable will return the most narrowly matching entry. This allows for the
creation of tables such as:

t abl e <goodguys> { 172.16.0.0/16, !172.16. 1.0/ 24,
172.16.1.100 }

bl ock in on dcO
pass in on dcO from <goodguys>

Any packet coming in through dc 0 will have its source address matched against the table
<goodguys>:

. 172.16.50.5 - narrowest match is 172.16.0.0/16; packet matches the table and will be passed
. 172.16.1.25 - narrowest match is!1172.16.1.0/24; packet matches an entry in the table but that
entry is negated (usesthe "!" modifier); packet does not match the table and will be blocked
. 172.16.1.100 - exactly matches 172.16.1.100; packet matches the table and will be passed

« 10.1.4.55 - does not match the table and will be blocked

[Previous. Lists and Macros] [Contents] [Next: Packet Filtering]

http://www.openbsd.org/fag/pf/tables.html (3 of 4)9/4/2011 10:04:23 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Tables

ﬁ www @openbsd.org
$OpenBSD: tables.html,v 1.29 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/tables.html (4 of 4)9/4/2011 10:04:23 AM

mailto:www@openbsd.org

PF: Packet Filtering

OpenBSD

[Previous: Tables] [Contents] [Next: Network Address Translation]

PF: Packet Filtering

Table of Contents

. Introduction

. Rule Syntax

. Default Deny

. Passing Traffic

. Thequi ck Keyword

. Keeping State

. Keeping State for UDP

. Stateful Tracking Options

. TCPFlags

. TCPSYN Proxy

. Blocking Spoofed Packets

. Unicast Reverse Path Forwarding
. Passive Operating System Fingerprinting
. |IPOptions

. Filtering Ruleset Example

Introduction

Packet filtering is the selective passing or blocking of data packets as they pass through a network interface. The
criteriathat pf(4) uses when inspecting packets are based on the Layer 3 (1Pv4 and |1Pv6) and Layer 4 (TCP, UDP,

ICMP, and |CMPv6) headers. The most often used criteria are source and destination address, source and
destination port, and protocol.

Filter rules specify the criteria that a packet must match and the resulting action, either block or pass, that is taken
when amatch is found. Filter rules are evaluated in sequential order, first to last. Unless the packet matches arule
containing the qui ck keyword, the packet will be evaluated against all filter rules before the final action is taken.
The last rule to match isthe "winner" and will dictate what action to take on the packet. Thereisan implicit pass
al | at the beginning of afiltering ruleset meaning that if a packet does not match any filter rule the resulting
action will be pass.

http://www.openbsd.org/fag/pf/filter.html (1 of 14)9/4/2011 10:04:25 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=ip&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ip6&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=tcp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=udp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=icmp&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=icmp6&sektion=4

PF: Packet Filtering

Rule Syntax
The genera, highly ssimplified syntax for filter rulesis:

action [direction] [log] [quick] [on interface] [af] [proto
protocol] \
[fromsrc_addr [port src_port]] [to dst_addr [port dst _port]] \
[flags tcp_flags] [state]

action
The action to be taken for matching packets, either pass or bl ock. The pass action will pass the packet
back to the kernel for further processing while the bl ock action will react based on the setting of the
bl ock- pol i cy option. The default reaction may be overridden by specifying either bl ock dr op or
bl ock return.

di rection
The direction the packet is moving on an interface, either i n or out .

| og
Specifies that the packet should be logged via pflogd(8). If the rule creates state then only the packet which
establishes the state islogged. To log all packetsregardless, usel og (al l).
gui ck
If apacket matches arule specifying qui ck, then that rule is considered the last matching rule and the
specified act i on istaken.
I nterface
The name or group of the network interface that the packet is moving through. Interfaces can be added to
arbitrary groups using the ifconfig(8) command. Several groups are also automatically created by the
kernel:
o Theegr ess group, which contains the interface(s) that holds the default route(s).
o Interface family group for cloned interfaces. For example: ppp or car p.
Thiswould cause the rule to match for any packet traversing any ppp or car p interface, respectively.
af
The address family of the packet, either i net for IPv4 or i net 6 for IPv6. PF isusually able to determine
this parameter based on the source and/or destination address(es).
pr ot ocol
The Layer 4 protocol of the packet:
o tep
oo udp
o icnp
o i cnp6
o A valid protocol namefrom/ et ¢/ pr ot ocol s
oA protocol number between 0 and 255
o A set of protocolsusing alist.
src_addr,dst _addr
The source/destination address in the IP header. Addresses can be specified as:
o A single IPv4 or IPv6 address.
o A CIDR network block.
o A fully qualified domain name that will be resolved via DNS when the ruleset is loaded. All

http://www.openbsd.org/fag/pf/filter.html (2 of 14)9/4/2011 10:04:25 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=protocols&sektion=5
http://public.swbell.net/dedicated/cidr.html

PF: Packet Filtering

0

0

0

resulting |P addresses will be substituted into the rule.
The name of a network interface or group. Any | P addresses assigned to the interface will be
substituted into the rule.
The name of anetwork interface followed by / net nask (i.e.,/ 24). Each |P address on the
interface is combined with the netmask to form a CIDR network block which is substituted into the
rule.
The name of anetwork interface or group in parentheses () . Thistells PF to update theruleif the
| P address(es) on the named interface change. Thisis useful on an interface that getsits IP address
via DHCP or dial-up as the ruleset doesn't have to be reloaded each time the address changes.
The name of anetwork interface followed by any one of these modifiers:
» . networ Kk - substitutes the CIDR network block (e.g., 192.168.0.0/24)
« : broadcast - substitutesthe network broadcast address (e.g., 192.168.0.255)
« . peer - substitutes the peer's IP address on a point-to-point link
In addition, the : O modifier can be appended to either an interface name or to any of the
above modifiersto indicate that PF should not include aliased | P addresses in the substitution.
These modifiers can also be used when the interface is contained in parentheses. Example:
f xp0: network: 0
A table.
The keyword ur pf - f ai | ed can be used for the source address to indicate that it should be run
through the uRPF check.
Any of the above but negated using the! ("not") modifier.
A set of addressesusing alist.
The keyword any meaning all addresses
Thekeyword al | whichisshortforfrom any to any.

src_port,dst_port
The source/destination port in the Layer 4 packet header. Ports can be specified as.

0

0

0

0

tcp_flags

A number between 1 and 65535

A valid servicenamefrom/ et c/ servi ces

A set of portsusing alist

A range:

I = (not equal)

< (lessthan)

> (greater than)

» <= (lessthan or equal)

« >= (greater than or equal)

= >< (range)

» <> (inverserange)
The last two are binary operators (they take two arguments) and do not include the
arguments in the range.

. (inclusive range)
The inclusive range operator is aso a binary operator and does include the arguments
in the range.

Specifies the flags that must be set in the TCP header when using pr ot o t cp. Flags are specified as

fl ags check/ mask. For example: f | ags S/ SA - thisinstructs PF to only look at the Sand A (SYN
and ACK) flags and to match if only the SYN flag is"on" (and is applied to all TCP rules by default).

f I ags any instructs PF not to check flags.

http://www.openbsd.org/fag/pf/filter.html (3 of 14)9/4/2011 10:04:25 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5

PF: Packet Filtering

state
Specifies whether state information is kept on packets matching thisrule.

o no st at e - workswith TCP, UDP, and ICMP. PF will not track this connection statefully. For
TCP connections, f | ags any isusually also required.

o keep st at e - workswith TCP, UDP, and ICMP. This option is the default for al filter rules.

o nmodul at e st at e - works only with TCP. PF will generate strong Initial Sequence Numbers
(ISNs) for packets matching this rule.

o Synproxy st at e - proxiesincoming TCP connections to help protect servers from spoofed TCP
SY N floods. This option includes the functionality of keep st at e andnodul ate st at e.

Default Deny

The recommended practice when setting up afirewall isto take a"default deny" approach. That is, to deny
everything and then selectively alow certain traffic through the firewall. This approach is recommended because it
errs on the side of caution and also makes writing aruleset easier.

To create adefault deny filter policy, the first two filter rules should be:

block in all
bl ock out all

Thiswill block all traffic on all interfacesin either direction from anywhere to anywhere.

Passing Traffic

Traffic must now be explicitly passed through the firewall or it will be dropped by the default deny policy. Thisis
where packet criteria such as source/destination port, source/destination address, and protocol come into play.
Whenever traffic is permitted to pass through the firewall the rule(s) should be written to be asrestrictive as
possible. Thisisto ensure that the intended traffic, and only the intended traffic, is permitted to pass.

Some examples:

Pass traffic in on dcO fromthe | ocal network, 192.168. 0.0/ 24,
to the OQpenBSD nachine's | P address 192.168.0.1. Also, pass the
return traffic out on dcO.

pass in on dcO from 192.168.0.0/24 to 192.168.0.1

pass out on dcO from 192.168.0.1 to 192.168.0.0/ 24

Pass TCP traffic in on fxp0 to the web server running on the

OpenBSD machi ne. The interface name, fxp0O, is used as the

destination address so that packets will only match this rule if
they' re destined for the QpenBSD nmachi ne.

pass in on fxp0 proto tcp fromany to fxp0 port ww

http://www.openbsd.org/fag/pf/filter.html (4 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

The qui ck Keyword

Asindicated earlier, each packet is evaluated against the filter ruleset from top to bottom. By default, the packet is
marked for passage, which can be changed by any rule, and could be changed back and forth several times before
the end of thefilter rules. The last matching rule” wins'. Thereis an exception to this: The qui ck option on a
filtering rule has the effect of canceling any further rule processing and causes the specified action to be taken.
Let'slook at a couple examples:

Wrong:

bl ock in on fxp0 proto tcp to port ssh
pass in al

In this case, the bl ock line may be evaluated, but will never have any effect, asit isthen followed by aline which
will pass everything.

Better:

bl ock in quick on fxp0O proto tcp to port ssh
pass in al

These rules are evaluated alittle differently. If the bl ock lineis matched, due to the qui ck option, the packet
will be blocked, and the rest of the ruleset will be ignored.

Keeping State

One of Packet Filter'simportant abilitiesis "keeping state”" or "stateful inspection”. Stateful inspection refersto
PF's ability to track the state, or progress, of a network connection. By storing information about each connection
in a state table, PF is able to quickly determine if a packet passing through the firewall belongs to an already
established connection. If it does, it is passed through the firewall without going through ruleset evaluation.

Keeping state has many advantages including simpler rulesets and better packet filtering performance. PF is able to
match packets moving in either direction to state table entries meaning that filter rules which pass returning traffic
don't need to be written. And, since packets matching stateful connections don't go through ruleset evaluation, the
time PF spends processing those packets can be greatly lessened.

When arule creates state, the first packet matching the rule creates a "state”" between the sender and receiver. Now,
not only do packets going from the sender to receiver match the state entry and bypass ruleset evaluation, but so do
the reply packets from receiver to sender.

All pass rules automatically create a state entry when a packet matches the rule. This can be explicitly disabled by
usingtheno st at e option.

pass out on fxp0 proto tcp fromany to any

http://www.openbsd.org/fag/pf/filter.html (5 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

Thisrule alows any outbound TCP traffic on the f xpO interface and also permits the reply traffic to pass back
through the firewall. Keeping state significantly improves the performance of your firewall as state lookups are
dramatically faster than running a packet through the filter rules.

Thenodul at e st at e optionworksjust likekeep st at e except that it only appliesto TCP packets. With
nodul at e st at e, the Initial Sequence Number (ISN) of outgoing connections is randomized. Thisis useful for
protecting connections initiated by certain operating systems that do a poor job of choosing ISNs. To allow ssimpler
rulesets, thenodul at e st at e option can be used in rules that specify protocols other than TCP; in those cases,
itistreated askeep st at e.

Keep state on outgoing TCP, UDP, and ICMP packets and modulate TCP I SNs:

pass out on fxp0 proto { tcp, udp, icnp } fromany \
to any nodul ate state

Another advantage of keeping state is that corresponding ICMP traffic will be passed through the firewall. For
example, if a TCP connection passing through the firewall is being tracked statefully and an |CMP source-quench
message referring to this TCP connection arrives, it will be matched to the appropriate state entry and passed
through the firewall.

The scope of a state entry is controlled globally by the st at e- pol i cy runtime option and on a per rule basis by

thei f - bound and f | oat i ng state option keywords. These per rule keywords have the same meaning as when
used with the st at e- pol i cy option. Example:

pass out on fxp0 proto { tcp, udp, icnp } fromany \
to any nodul ate state (if-bound)

Thisrule would dictate that in order for packets to match the state entry, they must be transiting the f xp0
interface.

Keeping State for UDP

One will sometimes hear it said that, "One can not create state with UDP as UDP is a statel ess protocol!" While it
istrue that a UDP communication session does not have any concept of state (an explicit start and stop of
communications), this does not have any impact on PF's ability to create state for a UDP session. In the case of
protocols without "start" and "end" packets, PF simply keeps track of how long it has been since a matching packet
has gone through. If the timeout is reached, the state is cleared. The timeout values can be set in the options section

of the pf . conf file.

Stateful Tracking Options

Filter rules that create state entries can specify various options to control the behavior of the resulting state entry.
The following options are available:

max nunber

http://www.openbsd.org/fag/pf/filter.html (6 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

Limit the maximum number of state entries the rule can create to number. If the maximum is reached,
packets that would normally create state fail to match this rule until the number of existing states decreases
below the limit.

no state
Prevents the rule from automatically creating a state entry.

source-track
This option enables the tracking of number of states created per source |P address. This option has two
formats:

o source-track rul e-Themaximum number of states created by thisruleislimited by the
rulesmax- sr c- nodes and max- sr c- st at es options. Only state entries created by this
particular rule count toward the rule's limits.

o source-track gl obal - Thenumber of states created by all rules that use this optionis
limited. Each rule can specify different max- sr c- nodes and max- sr c- st at es options,
however state entries created by any participating rule count towards each individual rule's limits.

The total number of source | P addresses tracked globally can be controlled viathe sr c- nodes runtime

option.

max- sr c- nodes nunber
When thesour ce-t rack optionisused, max- sr c- nodes will limit the number of source IP addresses
that can simultaneously create state. This option can only be used with sour ce-track rul e.

max- src-states nunber
When thesour ce-track optionisused, max- src- st at es will limit the number of simultaneous
state entries that can be created per source I P address. The scope of thislimit (i.e., states created by thisrule
only or states created by all rulesthat use sour ce-t r ack) is dependent on thesour ce-t r ack option
specified.

Options are specified inside parenthesis and immediately after one of the state keywords (keep st at e,

nodul at e st at e, orsynproxy st ate). Multiple options are separated by commas. In OpenBSD 4.1 and
later, thekeep st at e option became the implicit default for al filter rules. Despite this, when specifying
stateful options, one of the state keywords must still be used in front of the options.

An examplerule:

pass in on $ext if proto tcp to $web_server \

port www keep state \

(max 200, source-track rule, nmax-src-nodes 100, max-src-states
3)

The rule above defines the following behavior:

. Limit the absolute maximum number of states that this rule can create to 200

. Enable source tracking; limit state creation based on states created by thisrule only
« Limit the maximum number of nodes that can simultaneously create state to 100

« Limit the maximum number of simultaneous states per source IPto 3

A separate set of restrictions can be placed on stateful TCP connections that have completed the 3-way handshake.

http://www.openbsd.org/fag/pf/filter.html (7 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

max- src- conn nunber
Limit the maximum number of simultaneous TCP connections which have completed the 3-way handshake
that a single host can make.

max- src-conn-rate nunber / interval
Limit the rate of new connections to a certain amount per time interval.

Both of these options automatically invokethesour ce-track rul e option and areincompatible with
source-track gl obal .

Since these limits are only being placed on TCP connections that have completed the 3-way handshake, more
aggressive actions can be taken on offending I P addresses.

over |l oad <tabl e>
Put an offending host's | P address into the named table.

flush [global]
Kill any other states that match this rule and that were created by this source IP. When gl obal is
specified, kill al states matching this source I P, regardless of which rule created the state.

An example:

t abl e <abusi ve_host s> persi st
bl ock in quick from <abusive_host s>

pass in on $ext if proto tcp to $web_server \

port www flags S/ SA keep state \

(max-src-conn 100, max-src-conn-rate 15/5, overl oad
<abusi ve_host s> fl ush)

This does the following:

. Limits the maximum number of connections per source to 100

. Ratelimits the number of connectionsto 15 in a5 second span

. Putsthe |P address of any host that breaks these limitsinto the <abusi ve_host s> table
. For any offending | P addresses, flush any states created by thisrule.

TCP Flags

Matching TCP packets based on flags is most often used to filter TCP packets that are attempting to open a new
connection. The TCP flags and their meanings are listed here:

: FIN - Finish; end of session

: SYN - Synchronize; indicates request to start session
: RST - Reset; drop a connection

: PUSH - Push; packet is sent immediately

: ACK - Acknowledgement

- URG - Urgent

C>»U0UOTwmT

http://www.openbsd.org/fag/pf/filter.html (8 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

. E : ECE - Explicit Congestion Notification Echo
. W : CWR - Congestion Window Reduced

To have PF inspect the TCP flags during evaluation of arule, thef | ags keyword is used with the following
syntax:

fl ags check/ mask
flags any

The mask part tells PF to only inspect the specified flags and the check part specifies which flag(s) must be "on"
in the header for a match to occur. Using the any keyword allows any combination of flags to be set in the header.

pass in on fxp0 proto tcp fromany to any port ssh flags S/ SA
pass in on fxp0 proto tcp fromany to any port ssh

Asfl ags S/ SAisset by default, the above rules are equivalent, Each of these rules passes TCP traffic with the
SY N flag set while only looking at the SYN and ACK flags. A packet with the SYN and ECE flags would match
the above rules, while a packet with SYN and ACK or just ACK would not.

The default flags can be overridden by using the f | ags option as outlined above.

One should be careful with using flags -- understand what you are doing and why, and be careful with the advice
people give as alot of it is bad. Some people have suggested creating state "only if the SYN flag is set and no
others'. Such arule would end with:

flags S/ FSRPAUEW bad i dea!!

Thetheory is, create state only on the start of the TCP session, and the session should start with a SYN flag, and no
others. The problem is some sites are starting to use the ECN flag and any site using ECN that tries to connect to
you would be rejected by such arule. A much better guidelineisto not specify any flags at all and let PF apply the
default flags to your rules. If you truly need to specify flags yourself then this combination should be safe:

flags S/ SAFR

While thisis practical and safe, it is aso unnecessary to check the FIN and RST flagsif traffic isalso being
scrubbed. The scrubbing process will cause PF to drop any incoming packets with illegal TCP flag combinations
(such as SYN and RST) and to normalize potentially ambiguous combinations (such as SYN and FIN).

TCP SYN Proxy

Normally when aclient initiates a TCP connection to a server, PF will pass the handshake packets between the two
endpoints as they arrive. PF has the ability, however, to proxy the handshake. With the handshake proxied, PF
itself will complete the handshake with the client, initiate a handshake with the server, and then pass packets
between the two. The benefit of this process is that no packets are sent to the server before the client completes the
handshake. This eliminates the threat of spoofed TCP SY N floods affecting the server because a spoofed client

http://www.openbsd.org/fag/pf/filter.html (9 of 14)9/4/2011 10:04:25 AM

http://www.inetdaemon.com/tutorials/internet/tcp/3-way_handshake.shtml

PF: Packet Filtering

connection will be unable to complete the handshake.
The TCP SYN proxy is enabled using the synpr oxy st at e keywordsin filter rules. Example:

pass in on $ext _if proto tcp to $web_server port www synproxy
state

Here, connections to the web server will be TCP proxied by PF.

Because of theway synpr oxy st at e works, it also includes the same functionality askeep st at e and
nodul ate state.

The SYN proxy will not work if PFisrunning on a bridge(4).

Blocking Spoofed Packets

Address "spoofing” is when amalicious user fakes the source I P address in packets they transmit in order to either
hide their real address or to impersonate another node on the network. Once the user has spoofed their address they
can launch a network attack without revealing the true source of the attack or attempt to gain access to network
services that are restricted to certain IP addresses.

PF offers some protection against address spoofing through the ant i spoof keyword:

antispoof [log] [quick] for interface [af]

| og
Specifies that matching packets should be logged via pflogd(8).

qui ck

If a packet matches thisrule then it will be considered the "winning" rule and ruleset evaluation will stop.
i nterface

The network interface to activate spoofing protection on. This can also be alist of interfaces.

af
The address family to activate spoofing protection for, either i net for IPv4 ori net 6 for IPv6.
Example:

anti spoof for fxpO inet

When aruleset isloaded, any occurrences of theant i spoof keyword are expanded into two filter rules.
Assuming that interface f xp0 has IP address 10.0.0.1 and a subnet mask of 255.255.255.0 (i.e., a/24), the above
ant i spoof rulewould expand to:

block in on ! fxp0 inet from10.0.0.0/24 to any
block in inet from10.0.0.1 to any

http://www.openbsd.org/fag/pf/filter.ntml (10 of 14)9/4/2011 10:04:25 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.9

PF: Packet Filtering

These rules accomplish two things:

. Blocksal traffic coming from the 10.0.0.0/24 network that does not passin through f xp0. Since the
10.0.0.0/24 network ison the f xpO interface, packets with a source address in that network block should
never be seen coming in on any other interface.

. Blocksall incoming traffic from 10.0.0.1, the IP address on f xp0. The host machine should never send
packets to itself through an external interface, so any incoming packets with a source address belonging to
the machine can be considered malicious.

NOTE: Thefilter rulesthat theant i spoof rule expandsto will aso block packets sent over the |loopback
interface to local addresses. It's best practice to skip filtering on loopback interfaces anyways, but this becomes a
necessity when using antispoof rules:

set skip on 100

anti spoof for fxpO inet

Usage of ant i spoof should be restricted to interfaces that have been assigned an IP address. Using
ant i spoof on an interface without an IP address will result in filter rules such as:

bl ock drop in on ! fxp0 inet all
bl ock drop in inet all

With these rules there is arisk of blocking all inbound traffic on all interfaces.

Unicast Reverse Path Forwarding

PF offers a Unicast Reverse Path Forwarding (URPF) feature. When a packet is run through the uRPF check, the
source | P address of the packet islooked up in the routing table. If the outbound interface found in the routing
table entry is the same as the interface that the packet just came in on, then the uRPF check passes. If the interfaces
don't match, then it's possible the packet has had its source address spoofed.

The uRPF check can be performed on packets by using the ur pf - f ai | ed keyword in filter rules:
block in quick fromurpf-failed | abel uRPF
Note that the uRPF check only makes sense in an environment where routing is symmetric.

URPF provides the same functionality as antispoof rules.

Passive Operating System Fingerprinting

Passive OS Fingerprinting (OSFP) is a method for passively detecting the operating system of a remote host based
on certain characteristics within that host's TCP SY N packets. This information can then be used as criteriawithin
filter rules.

http://www.openbsd.org/fag/pf/filter.ntml (11 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

PF determines the remote operating system by comparing characteristics of a TCP SYN packet against the
fingerprintsfile, which by default is/ et ¢/ pf . 0s. Once PF is enabled, the current fingerprint list can be viewed

with this command:

pfctl -s osfp

Within afilter rule, afingerprint may be specified by OS class, version, or subtype/patch level. Each of these items
islisted in the output of the pf ct | command shown above. To specify afingerprint in afilter rule, the os
keyword is used:

pass in on $ext if fromany os OpenBSD keep state
bl ock in on $ext _if fromany os "Wndows 2000"
block in on $ext _if fromany os "Linux 2.4 ts"

bl ock in on $ext_if fromany os unknown

The special operating system class unknown allows for matching packets when the OS fingerprint is not known.
TAKE NOTE of the following:
. Operating system fingerprints are occasionally wrong due to spoofed and/or crafted packets that are made
to look like they originated from a specific operating system.
. Certain revisions or patchlevels of an operating system may change the stack's behavior and cause it to
either not match what's in the fingerprints file or to match another entry altogether.

. OSFP only works on the TCP SY N packet; it will not work on other protocols or on aready established
connections.

IP Options

By default, PF blocks packets with | P options set. This can make the job more difficult for "OS fingerprinting"
utilities like nmap. If you have an application that requires the passing of these packets, such as multicast or IGMP,
you can usetheal | ow opt s directive:

pass in quick on fxp0 all allow opts

Filtering Ruleset Example

Below is an example of afiltering ruleset. The machine running PF is acting as afirewall between a small, interna
network and the Internet. Only the filter rules are shown; queueing, nat , r dr , etc., have been left out of this

example.

http://www.openbsd.org/fag/pf/filter.ntml (12 of 14)9/4/2011 10:04:25 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pf.os&sektion=5&manpath=OpenBSD+4.9

PF: Packet Filtering

ext_if = "fxp0"

int_ if = "dcO"

| an_net = "192.168. 0. 0/ 24"

table containing all I P addresses assigned to the firewall

table <firewall > const { self }

don't filter on the | oopback interface
set skip on |00

scrub incom ng packets
match in all scrub (no-df)

setup a default deny policy
bl ock al

activate spoofing protection for all interfaces
bl ock in quick fromurpf-failed

only all ow ssh connections fromthe |ocal network if it's fromthe
trusted conputer, 192.168.0.15. use "block return" so that a TCP RST is
sent to close bl ocked connections right away. use "quick"” so that this
rule is not overridden by the "pass" rul es bel ow
bl ock return in quick on $int_if proto tcp from! 192.168.0.15 \

to $int_if port ssh

pass all traffic to and fromthe | ocal network.

these rules will create state entries due to the default
"keep state" option which will automatically be appli ed.
pass in on $int _if from $l an_net

pass out on $int_if to $lan_net

pass tcp, udp, and icnp out on the external (Internet) interface.
tcp connections will be nodul ated, udp/icnp will be tracked

statefully.

pass out on $ext if proto { tcp udp icnp } all nodul ate state

all ow ssh connections in on the external interface as long as they're
NOT destined for the firewall (i.e., they're destined for a machi ne on
the local network). log the initial packet so that we can later tell
who is trying to connect. use the tcp syn proxy to proxy the connection.
the default flags "S/SA" wll automatically be applied to the rule by
PF.
pass in log on $ext if proto tcp to ! <firewall >\
port ssh synproxy state

http://www.openbsd.org/fag/pf/filter.ntml (13 of 14)9/4/2011 10:04:25 AM

PF: Packet Filtering

[Previous: Tables] [Contents] [Next: Network Address Transation]

& www @openbsd.org
$OpenBSD: filter.html,v 1.59 2011/06/28 08:33:49 jj Exp $

http://www.openbsd.org/fag/pf/filter.ntml (14 of 14)9/4/2011 10:04:25 AM

mailto:www@openbsd.org

PF: Network Address Translation (NAT)

OpenBSD

[Previous: Packet Filtering] [Contents| [Next: Traffic Redirection (Port Forwarding)]

PF: Network Address Translation (NAT)

Table of Contents

. Introduction

. How NAT Works

. |PForwarding

. Configuring NAT

. Bidirectiona Mapping (1:1 mapping)
. Trandation Rule Exceptions

. Checking NAT Status

Introduction

Network Address Trandation (NAT) isaway to map an entire network (or networks) to asingle IP
address. NAT is necessary when the number of |P addresses assigned to you by your Internet Service
Provider is less than the total number of computers that you wish to provide Internet accessfor. NAT is
described in RFC 1631, "The IP Network Address Trandator (NAT)."

NAT alowsyou to take advantage of the reserved address blocks described in RFC 1918, "Address
Allocation for Private Internets." Typically, your internal network will be setup to use one or more of
these network blocks. They are:

10.0.0.0/8 (10.0.0.0 - 10.255. 255. 255)
172.16.0.0/12 (172.16.0.0 - 172.31. 255. 255)
192.168. 0. 0/ 16 (192.168.0.0 - 192.168. 255. 255)

An OpenBSD system doing NAT will have at least two network adapters, one to the Internet, the other
to your internal network. NAT will be trandating requests from the internal network so they appear to
al be coming from your OpenBSD NAT system.

http://www.openbsd.org/fag/pf/nat.ntml (1 of 8)9/4/2011 10:04:26 AM

http://www.openbsd.org/index.html
http://www.geektools.com/rfc/rfc1631.txt
http://www.geektools.com/rfc/rfc1918.txt

PF: Network Address Translation (NAT)

How NAT Works

When aclient on the internal network contacts a machine on the Internet, it sends out | P packets
destined for that machine. These packets contain all the addressing information necessary to get them to
their destination. NAT is concerned with these pieces of information:

. Source IP address (for example, 192.168.1.35)
« Source TCP or UDP port (for example, 2132)

When the packets pass through the NAT gateway they will be modified so that they appear to be coming
from the NAT gateway itself. The NAT gateway will record the changes it makesin its state table so
that it can @) reverse the changes on return packets and b) ensure that return packets are passed through
the firewall and are not blocked. For example, the following changes might be made:

. Source IP: replaced with the external address of the gateway (for example, 24.5.0.5)
. Source port: replaced with arandomly chosen, unused port on the gateway (for example, 53136)

Neither the internal machine nor the Internet host is aware of these trandation steps. To the internal
machine, the NAT system is simply an Internet gateway. To the Internet host, the packets appear to
come directly from the NAT system; it is completely unaware that the internal workstation even exists.

When the Internet host replies to the internal machine's packets, they will be addressed to the NAT
gateway's external 1P (24.5.0.5) at the trandlation port (53136). The NAT gateway will then search the
state table to determine if the reply packets match an already established connection. A unique match
will be found based on the I P/port combination which tells PF the packets belong to a connection
initiated by the internal machine 192.168.1.35. PF will then make the opposite changes it made to the
outgoing packets and forward the reply packets on to the internal machine.

Trangdlation of ICMP packets happensin asimilar fashion but without the source port modification.

IP Forwarding

Since NAT isamost aways used on routers and network gateways, it will probably be necessary to
enable IP forwarding so that packets can travel between network interfaces on the OpenBSD machine.
IP forwarding is enabled using the sysctl(3) mechanism:

sysctl net.inet.ip.forwardi ng=1
sysctl net.inet6.ip6.forwarding=1 (if using |IPv6)

To make this change permanent, the following lines should be added to/ et ¢/ sysct | . conf :

http://www.openbsd.org/fag/pf/nat.html (2 of 8)9/4/2011 10:04:26 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl.conf&sektion=5

PF: Network Address Translation (NAT)

net.inet.ip.forwardi ng=1
net.inet6.ip6.forwardi ng=1

These lines are present but commented out (prefixed with a#) in the default install. Remove the # and
save thefile. IP forwarding will be enabled when the machine is rebooted.

Configuring NAT

NOTE: Thisinformation isfor OpenBSD 4.7. NAT configuration was significantly different in earlier
Versions,

NAT is specified as an optional nat - t o parameter to an outbound pass rule. Often, rather than being
set directly on the pass rule, amat ch ruleis used. When a packet is selected by amat ch rule,
parameters (e.g. nat - t 0) in that rule are remembered and are applied to the packet when apass rule
matching the packet is reached. This permits awhole class of packets to be handled by asingle mat ch
rule and then specific decisions on whether to allow the traffic can be made with bl ock and pass
rules,

The genera format in pf . conf looks something like this:

mat ch out on interface [af] \
fromsrc_addr to dst_addr \
nat-to ext_addr [pool _type] [static-port]

pass out [log] on interface [af] [proto protocol] \
fromext_addr [port src_port] \
to dst_addr [port dst_port]

mat ch
When a packet traverses the ruleset and matches amat ch rule, any optional parameters specified
in that rule are remembered for future use (made "sticky").

pass
Thisrule alows the packet to be transmitted. If the packet was previously matched by amat ch
rule where parameters were specified, they will be applied to this packet. pass rules may have
their own parameters, these take priority over parameters specified in amat ch rule.

out
Specifies the direction of packet flow where this rule applies. nat - t o may only be specified for
outbound packets.

L og matching packets via pflogd(8). Normally only the first packet that matches will be logged.
Tolog al matching packets, usel og (al l).

http://www.openbsd.org/fag/pf/nat.ntml (3 of 8)9/4/2011 10:04:26 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.9

PF: Network Address Translation (NAT)

i nterface
The name or group of the network interface to transmit packets on.
af
The address family, either i net for IPv4 or i net 6 for IPv6. PF isusually able to determine this
parameter based on the source/destination address(es).
pr ot ocol
The protocol (e.g. tcp, udp, icmp) of packetsto allow. If src_port or dst_port is specified, the
protocol must also be given.
src_addr
The source (internal) address of packets that will be translated. The source address can be
specified as:
o A single IPv4 or IPv6 address.
o A CIDR network block.

o A fully qualified domain name that will be resolved via DNS when the ruleset is loaded.
All resulting IP addresses will be substituted into the rule.

o The name or group of a network interface. Any | P addresses assigned to the interface will
be substituted into the rule at load time.

o The name of anetwork interface followed by / net mask (e.g./ 24). Each |P address on
the interface is combined with the netmask to form a CIDR network block which is
substituted into the rule.

o The name or group of a network interface followed by any one of these modifiers:

= . networ k - substitutes the CIDR network block (e.g., 192.168.0.0/24)

= . broadcast - substitutesthe network broadcast address (e.g., 192.168.0.255)

= . peer - substitutesthe peer's | P address on a point-to-point link
In addition, the : 0 modifier can be appended to either an interface name/group or
to any of the above modifiers to indicate that PF should not include aliased IP
addresses in the substitution. These modifiers can also be used when the interface
Is contained in parentheses. Example: f xp0: net wor k: O

o A table.

o Any of the above but negated using the! ("not") modifier.
o A set of addressesusing alist.

o The keyword any meaning all addresses
src_port
The source port in the Layer 4 packet header. Ports can be specified as:
o A number between 1 and 65535
o A valid servicenamefrom/ et c/ servi ces
o A set of portsusing alist
o A range:
= ! = (not equal)
= < (lessthan)
= > (greater than)
« <= (lessthan or equal)

http://www.openbsd.org/fag/pf/nat.ntml (4 of 8)9/4/2011 10:04:26 AM

http://public.pacbell.net/dedicated/cidr.html
http://www.openbsd.org/cgi-bin/man.cgi?query=services&sektion=5

PF: Network Address Translation (NAT)

« >= (greater than or equal)
= >< (range)
« <> (inverserange)
The last two are binary operators (they take two arguments) and do not
include the arguments in the range.
= : (inclusive range)
The inclusive range operator is also a binary operator and does include the
arguments in the range.
Theport optionisnot usualy used in nat rules because the goal isusually to NAT all traffic
regardless of the port(s) being used.
dst addr
The destination address of packetsto be translated. The destination addressis specified in the
same way as the source address.
dst _port
The destination port in the Layer 4 packet header. This port is specified in the same way asthe
source port.
ext addr
The external (trandation) address on the NAT gateway that packets will be translated to. The
external address can be specified as:
o A singleIPv4 or IPv6 address.
o A CIDR network block.

o A fully qualified domain name that will be resolved via DNS when the ruleset is loaded.

o The name of the external network interface. Any | P addresses assigned to the interface
will be substituted into the rule at load time.

o The name of the external network interface in parentheses () . Thistells PF to update the
ruleif the IP address(es) on the named interface changes. Thisis highly useful when the
external interface getsits | P address via DHCP or dial-up as the ruleset doesn't have to be
reloaded each time the address changes.

o The name of a network interface followed by either one of these modifiers:

= . nNetwor k - substitutes the CIDR network block (e.g., 192.168.0.0/24)
= . peer - substitutesthe peer's | P address on a point-to-point link
In addition, the : O modifier can be appended to either an interface name or to any
of the above modifiersto indicate that PF should not include aliased | P addresses
in the substitution. These modifiers can aso be used when the interfaceis
contained in parentheses. Example: f xp0: net wor k: O
o A set of addressesusing alist.
pool type
Specifies the type of address pool to use for tranglation.
static-port
Tells PF not to translate the source port in TCP and UDP packets.

Thiswould lead to amost basic form of these lines similar to this:

http://www.openbsd.org/fag/pf/nat.html (5 of 8)9/4/2011 10:04:26 AM

http://public.pacbell.net/dedicated/cidr.html

PF: Network Address Translation (NAT)

match out on tI0 from 192.168.1.0/24 to any nat-to 24.5.0.5
pass on t10 from 192.168.1.0/24 to any

or you may simply use
pass out on tl10 from 192.168.1.0/24 to any nat-to 24.5.0.5

Thisrule saysto perform NAT onthet | O interface for any packets coming from 192.168.1.0/24 and to
replace the source | P address with 24.5.0.5.

While the above ruleis correct, it is not recommended form. Maintenance could be difficult as any
change of the external or internal network numbers would require the line be changed. Compare instead
with this easier to maintain line (t | O isexternal, dcO internal):

pass out on t10 fromdcO: network to any nat-to tlO

The advantage should be fairly clear: you can change the | P addresses of either interface without
changing thisrule.

When specifying an interface name for the translation address as above, the |P address is determined at
pf.conf load time, not on the fly. If you are using DHCP to configure your external interface, this can be
aproblem. If your assigned I P address changes, NAT will continue translating outgoing packets using
the old IP address. Thiswill cause outgoing connections to stop functioning. To get around this, you can
tell PF to automatically update the translation address by putting parentheses around the interface name:

pass out on t10 fromdcO: network to any nat-to (tlO0)

This method works for translation to both 1Pv4 and 1Pv6 addresses.
Bidirectional Mapping (1:1 mapping)
A bidirectional mapping can be established by using the bi nat - t o parameter. A bi nat -t o rule
establishes a one to one mapping between an internal 1P address and an external address. This can be
useful, for example, to provide aweb server on the internal network with its own external |P address.
Connections from the Internet to the external address will be translated to the internal address and
connections from the web server (such as DNS requests) will be translated to the external address. TCP
and UDP ports are never modified with bi nat - t o rules asthey are with nat rules.
Example:

web serv_int = "192.168. 1. 100"

http://www.openbsd.org/fag/pf/nat.html (6 of 8)9/4/2011 10:04:26 AM

PF: Network Address Translation (NAT)

web serv_ext = "24.5.0.6"

pass on t10 from $web _serv_int to any binat-to $web serv_ext

Translation Rule Exceptions

If you need to translate most traffic, but provide exceptions in some cases, make sure that the exceptions
are handled by afilter rule which does not include the nat-to parameter. For example, if the NAT
example above was modified to look like this:

pass out on t10 from 192.168.1.0/24 to any nat-to 24.2.74.79
pass out on tl0 from 192.168.1.208 to any

Then the entire 192.168.1.0/24 network would have its packets translated to the external address
24.2.74.79 except for 192.168.1.208.

Checking NAT Status

To view the active NAT tranglations pfctl(8) isused withthe- s st at e option. This option will list all
the current NAT sessions:

pfctl -s state

fxp0 tcp 192.168.1.35:2132 (24.5.0.5:53136) -> 65.42. 33. 245: 22
TIME WAIT: TI MVE WAI T

fxp0 udp 192.168. 1. 35: 2491 (24.5.0.5:60527) -> 24.2.68.33:53
MULTI PLE: SI NGLE

Explanations (first line only):

fxp0
Indicates the interface that the state is bound to. Theword sel f will appear if the stateis
fl oati ng.
TCP
The protocol being used by the connection.
192.168.1.35:2132
The IP address (192.168.1.35) of the machine on the internal network. The source port (2132) is
shown after the address. Thisis also the address that is replaced in the IP header.
24.5.0.5:53136

http://www.openbsd.org/fag/pf/nat.ntml (7 of 8)9/4/2011 10:04:26 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Network Address Translation (NAT)

The IP address (24.5.0.5) and port (53136) on the gateway that packets are being translated to.

65.42.33.245:22
The IP address (65.42.33.245) and the port (22) that the internal machine is connecting to.

TIME_ WAIT:TIME_WAIT
This indicates what state PF believes the TCP connection to bein.

[Previous. Packet Filtering] [Contents] [Next: Traffic Redirection (Port Forwarding)]

& www @openbsd.org
$OpenBSD: nat.html,v 1.36 2011/06/28 08:33:49 jj Exp $

http://www.openbsd.org/fag/pf/nat.ntml (8 of 8)9/4/2011 10:04:26 AM

mailto:www@openbsd.org

PF: Traffic Redirection (Port Forwarding)

OpenBSD

[Previous: Network Address Trandation] [Contents| [Next: Shortcuts For Creating Rul esets]

PF: Redirection (Port Forwarding)

Table of Contents

. Introduction
. Redirection and Packet Filtering
« Security Implications
. Redirection and Reflection
o Split-Horizon DNS
o Moving the Server Into a Separate Local Network
o TCP Proxying
o RDR-TO and NAT-TO Combination

Introduction

When you have NAT running in your office you have the entire Internet available to all your machines.
What if you have a machine behind the NAT gateway that needs to be accessed from outside? Thisis
where redirection comes in. Redirection allows incoming traffic to be sent to a machine behind the NAT
gateway.

Let'slook at an example:

pass in on tl0 proto tcp fromany to any port 80 rdr-to
192.168. 1. 20

Thisline redirects TCP port 80 (web server) traffic to a machine inside the network at 192.168.1.20. So,
even though 192.168.1.20 is behind your gateway and inside your network, the outside world can access
it.

Thefrom any to any part of theabover dr line can be quite useful. If you know what addresses

http://www.openbsd.org/fag/pf/rdr.html (1 of 5)9/4/2011 10:04:27 AM

http://www.openbsd.org/index.html

PF: Traffic Redirection (Port Forwarding)

or subnets are supposed to have access to the web server at port 80, you can restrict them here:

pass in on tl0O proto tcp from 27.146.49.0/24 to any port 80
\
rdr-to 192.168. 1. 20

Thiswill redirect only the specified subnet. Note thisimplies you can redirect different incoming hosts
to different machines behind the gateway. This can be quite useful. For example, you could have users at
remote sites access their own desktop computers using the same port and | P address on the gateway as
long as you know the I P address they will be connecting from:

pass in on tl0 proto tcp from 27.146.49.14 to any port 80 \
rdr-to 192.168. 1. 20

pass in on tl0 proto tcp from16.114.4.89 to any port 80 \
rdr-to 192. 168. 1. 22

pass in on tl0 proto tcp from24.2.74.178 to any port 80 \
rdr-to 192. 168. 1. 23

A range of ports can also be redirected within the same rule:

pass in on tl0 proto tcp fromany to any port 5000: 5500 \
rdr-to 192. 168. 1. 20

pass in on tl0 proto tcp fromany to any port 5000: 5500 \
rdr-to 192.168. 1. 20 port 6000

pass in on tl0 proto tcp fromany to any port 5000: 5500 \
rdr-to 192.168. 1. 20 port 7000: *

These examples show ports 5000 to 5500 inclusive being redirected to 192.168.1.20. In rule #1, port
5000 is redirected to 5000, 5001 to 5001, etc. In rule #2, the entire port range is redirected to port 6000.
And in rule #3, port 5000 is redirected to 7000, 5001 to 7001, etc.

Security Implications

Redirection does have security implications. Punching a hole in the firewall to allow traffic into the
internal, protected network potentially opens up the internal machine to compromise. If trafficis
forwarded to an internal web server for example, and a vulnerability is discovered in the web server
daemon or in a CGI script run on the web server, then that machine can be compromised from an
intruder on the Internet. From there, the intruder has a doorway to the internal network, onethat is
permitted to pass right through the firewall.

These risks can be minimized by keeping the externally accessed system tightly confined on a separate
network. This network is often referred to as a Demilitarized Zone (DMZ) or a Private Service Network

http://www.openbsd.org/fag/pf/rdr.html (2 of 5)9/4/2011 10:04:27 AM

PF: Traffic Redirection (Port Forwarding)

(PSN). Thisway, if the web server is compromised, the effects can be limited to the DMZ/PSN network
by careful filtering of the traffic permitted to and from the DMZ/PSN.

Redirection and Reflection

Often, redirection rules are used to forward incoming connections from the Internet to alocal server with
aprivate address in the internal network or LAN, asin:

server = 192.168.1.40

pass in on $ext if proto tcp fromany to $ext if port 80 \
rdr-to $server port 80

But when the redirection rule istested from a client on the LAN, it doesn't work. The reason is that
redirection rules apply only to packets that pass through the specified interface ($ext _i f, the external
interface, in the example). Connecting to the external address of the firewall from a host on the LAN,
however, does not mean the packets will actually pass through its external interface. The TCP/IP stack
on the firewall compares the destination address of incoming packets with its own addresses and aliases
and detects connections to itself as soon as they have passed the internal interface. Such packets do not
physically pass through the external interface, and the stack does not simulate such a passage in any
way. Thus, PF never sees these packets on the external interface, and the redirection rule, specifying the
external interface, does not apply.

Adding a second redirection rule for the internal interface does not have the desired effect either. When
the local client connects to the external address of the firewall, the initial packet of the TCP handshake
reaches the firewall through the internal interface. The redirection rule does apply and the destination
address gets replaced with that of the internal server. The packet gets forwarded back through the
internal interface and reaches the internal server. But the source address has not been translated, and still
contains the local client's address, so the server sendsitsreplies directly to the client. The firewall never
sees the reply and has no chance to properly reverse the translation. The client receives areply from a
source it never expected and dropsit. The TCP handshake then fails and no connection can be
established.

Still, it's often desirable for clients on the LAN to connect to the same internal server as external clients
and to do so transparently. There are several solutions for this problem:

Split-Horizon DNS

It's possible to configure DNS servers to answer queries from local hosts differently than external
gueries so that local clientswill receive the internal server's address during name resolution. They will
then connect directly to the local server, and the firewall isn't involved at all. This reduces local traffic
since packets don't have to be sent through the firewall.

http://www.openbsd.org/fag/pf/rdr.html (3 of 5)9/4/2011 10:04:27 AM

PF: Traffic Redirection (Port Forwarding)

Moving the Server Into a Separate Local Network

Adding an additional network interface to the firewall and moving the local server from the client's
network into a dedicated network (DM Z) allows redirecting of connections from local clientsin the
same way as the redirection of external connections. Use of separate networks has several advantages,
including improving security by isolating the server from the remaining local hosts. Should the server
(which in our caseis reachable from the Internet) ever become compromised, it can't access other local
hosts directly as all connections have to pass through the firewall.

TCP Proxying

A generic TCP proxy can be setup on the firewall, either listening on the port to be forwarded or getting
connections on the internal interface redirected to the port it's listening on. When alocal client connects
to the firewall, the proxy accepts the connection, establishes a second connection to the internal server,
and forwards data between those two connections.

Simple proxies can be created using inetd(8) and nc(1). Thefollowing/ et ¢/ i net d. conf entry

creates a listening socket bound to the loopback address (127.0.0.1) and port 5000. Connections are
forwarded to port 80 on server 192.168.1.10. The forwarding is done by user "proxy".

127.0.0. 1: 5000 streamtcp nowait proxy /usr/bin/nc nc -w\
20 192.168.1.10 80

The following redirection rule forwards port 80 on the internal interface to the proxy:
pass in on $int _if proto tcp from$int _net to $ext if port
80 \
rdr-to 127.0.0.1 port 5000

High-performance proxies may also be created with relayd(8).

RDR-TO and NAT-TO Combination

With an additional NAT rule on the internal interface, the lacking source address translation described
above can be achieved.

pass in on $int if proto tcp from$int net to $ext if port
80 \

rdr-to $server
pass out on $int if proto tcp to $server port 80 \

http://www.openbsd.org/fag/pf/rdr.html (4 of 5)9/4/2011 10:04:27 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=inetd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=nc&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=relayd&sektion=8

PF: Traffic Redirection (Port Forwarding)

received-on $int if nat-to $int if

Thiswill cause theinitial packet from the client to be translated again when it's forwarded back through
the internal interface, replacing the client's source address with the firewall's internal address. The
internal server will reply back to the firewall, which can reverse both NAT and RDR translations when
forwarding to the local client. This construct is rather complex asit creates two separate states for each
reflected connection. Care must be taken to prevent the NAT rule from applying to other traffic, for
Instance connections originating from external hosts (through other redirections) or the firewall itself.
Note that ther dr - t o rule above will cause the TCP/IP stack to see packets arriving on the internal
interface with a destination address inside the internal network.

[Previous. Network Address Trandation] [Contents] [Next: Shortcuts For Creating Rul esets]

& www@openbsd.org
$0penBSD: rdr.html,v 1.31 2011/05/09 17:04:58 sthen Exp $

http://www.openbsd.org/fag/pf/rdr.html (5 of 5)9/4/2011 10:04:27 AM

mailto:www@openbsd.org

PF: Shortcuts For Creating Rulesets

OpenBSD

[Previous. Traffic Redirection (Port Forwarding)] [Contents] [Next: Runtime Options]

PF: Shortcuts For Creating Rulesets

Table of Contents

. Introduction

. Using Macros

. Using Lists

« PF Grammar
o Elimination of Keywords
o Ret ur n Simplification
o Keyword Ordering

Introduction

PF offers many ways in which aruleset can be ssimplified. Some good examples are by using macros and
lists. In addition, the ruleset language, or grammar, also offers some shortcuts for making a ruleset
simpler. Asageneral rule of thumb, the ssmpler aruleset is, the easier it isto understand and to
maintain.

Using Macros

Macros are useful because they provide an alternative to hard-coding addresses, port numbers, interfaces
names, etc., into aruleset. Did a server's | P address change? No problem, just update the macro; no need
to mess around with the filter rules that you've spent time and energy perfecting for your needs.

A common convention in PF rulesetsis to define a macro for each network interface. If anetwork card
ever needs to be replaced with one that uses a different driver, for example swapping out a 3Com for an
Intel, the macro can be updated and the filter rules will function as before. Another benefit is when
installing the same ruleset on multiple machines. Certain machines may have different network cardsin
them, and using macros to define the network interfaces allows the rulesets to be installed with minimal

http://www.openbsd.org/fag/pf/shortcuts.html (1 of 6)9/4/2011 10:04:29 AM

http://www.openbsd.org/index.html

PF: Shortcuts For Creating Rulesets

editing. Using macros to define information in aruleset that is subject to change, such as port numbers,
| P addresses, and interface names, is recommended practice.

define macros for each network i nterface

IntlF = "dcO"
ExtIF = "fxp0"
Dzl F = "fxpl"

Another common convention is using macros to define | P addresses and network blocks. This can
greatly reduce the maintenance of aruleset when | P addresses change.

define our networks

= "192. 168. 0. 0/ 24"
Ext Add = "24. 65. 13. 4"

= "10. 0. 0. 0/ 24"

If the internal network ever expanded or was renumbered into a different IP block, the macro can be
updated:

IntNet = "{ 192.168.0.0/24, 192.168.1.0/24 }"

Once the ruleset is reloaded, everything will work as before.
Using Lists

Let'slook at a good set of rulesto have in your ruleset to handle RFC 1918 addresses that just shouldn't
be floating around the Internet, and when they are, are usually trying to cause trouble:

block in quick on tlO
block in quick on tlO
block in quick on tlO
block in quick on tlO
bl ock out quick on tlO0
bl ock out quick on tlO0
bl ock out quick on tlO0
bl ock out quick on tlO0

net from127.0.0.0/8 to any
net from 192.168.0.0/16 to any
net from172.16.0.0/12 to any
net from10.0.0.0/8 to any
net fromany to 127.0.0.0/8
net fromany to 192.168.0.0/16
net fromany to 172.16.0.0/12
net fromany to 10.0.0.0/8

Now look at the following simplification:

block in quick on tl0 inet from{ 127.0.0.0/8,
192.168. 0.0/ 16, \

http://www.openbsd.org/fag/pf/shortcuts.html (2 of 6)9/4/2011 10:04:29 AM

http://www.geektools.com/rfc/rfc1918.txt

PF: Shortcuts For Creating Rulesets

172.16.0.0/12, 10.0.0.0/8 } to any
bl ock out quick on tl0 inet fromany to { 127.0.0.0/8, \
192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

The ruleset has been reduced from eight lines down to two. Things get even better when macros are used
in conjunction with alist:

NoRoutel Ps = "{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12,
\
10.0.0.0/8 }"
ExtIF = "tl0"
block in quick on $ExtIF from $NoRoutel Ps to any
bl ock out quick on $ExtIF from any to $NoRout el Ps

Note that macros and lists simplify the pf . conf file, but the lines are actually expanded by pfctl(8)
into multiple rules. So, the above example actually expands to the following rules:

block in quick on tlO
block in quick on tlO
block in quick on tlO
block in quick on tlO
bl ock out quick on tlO
bl ock out quick on tlO
bl ock out quick on tlO
bl ock out quick on tlO

net from127.0.0.0/8 to any
net from 192. 168.0.0/16 to any
net from172.16.0.0/12 to any
net from 10.0.0.0/8 to any

net fromany to 10.0.0.0/8

net fromany to 172.16.0.0/12
net fromany to 192. 168. 0.0/ 16
net fromany to 127.0.0.0/8

Asyou can see, the PF expansion is purely a convenience for the writer and maintainer of the pf . conf
file, not an actual ssimplification of the rules processed by pf(4).

Macros can be used to define more than just addresses and ports; they can be used anywhere in a PF
rulesfile:

pre = "pass in quick on epO inet proto tcp from™
post = "to any port { 80, 6667 }"

David's classroom
$pre 21.14.24.80 $post

Nick's hone
$pre 24.2.74.79 $post
$pre 24.2.74.178 $post

http://www.openbsd.org/fag/pf/shortcuts.html (3 of 6)9/4/2011 10:04:29 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.9

PF: Shortcuts For Creating Rulesets

Expands to:

pass in quick on ep0O inet proto tcp from 21.14.24.80 to any
\

port = 80
pass in quick on ep0O inet proto tcp from 21.14.24.80 to any
\
port = 6667
pass in quick on epO inet proto tcp from24.2.74.79 to any \
port = 80
pass in quick on epO inet proto tcp from24.2.74.79 to any \
port = 6667

pass in quick on ep0O inet proto tcp from24.2.74.178 to any
\

port = 80
pass in quick on ep0O inet proto tcp from24.2.74.178 to any
\

port = 6667

PF Grammar

Packet Filter's grammar is quite flexible which, in turn, allows for great flexibility in aruleset. PF is able
to infer certain keywords which means that they don't have to be explicitly stated in arule, and keyword
ordering is relaxed such that it isn't necessary to memorize strict syntax.

Elimination of Keywords
To define a"default deny" policy, two rules are used:

block in all
bl ock out all

This can now be reduced to:

bl ock
When no direction is specified, PF will assume the rule applies to packets moving in both directions.
Similarly, the"f rom any to any" and"al | " clauses can be left out of arule, for example:

block in on rl0 all

http://www.openbsd.org/fag/pf/shortcuts.html (4 of 6)9/4/2011 10:04:29 AM

PF: Shortcuts For Creating Rulesets

pass in quick log on rl0 proto tcp fromany to any port 22
keep state

can be smplified as:

block in on rlO
pass in quick log on rl0O proto tcp to port 22 keep state

Thefirst rule blocks all incoming packets from anywhere to anywhere on rl0, and the second rule passes
in TCP traffic on rlO to port 22.

Ret ur n Simplification

A ruleset used to block packets and reply with a TCP RST or ICM P Unreachable response could [ook
like this:

bl ock in all

bl ock return-rst in proto tcp all
bl ock return-icnp in proto udp all
bl ock out all

bl ock return-rst out proto tcp all
bl ock return-icnp out proto udp all

This can be simplified as:
bl ock return

When PF seesther et ur n keyword, it's smart enough to send the proper response, or no response at all,
depending on the protocol of the packet being blocked.

Keyword Ordering

The order in which keywords are specified is flexible in most cases. For example, arule written as:

pass in log quick on rl0 proto tcp to port 22\
flags S/ SA keep state queue ssh | abel ssh

Can aso be written as:

pass in quick log on rl0 proto tcp to port 22\
gueue ssh keep state | abel ssh flags S/ SA

http://www.openbsd.org/fag/pf/shortcuts.html (5 of 6)9/4/2011 10:04:29 AM

PF: Shortcuts For Creating Rulesets

Other, similar variations will also work.

[Previous: Traffic Redirection (Port Forwarding)] [Contents] [Next: Runtime Options]

& www@openbsd.org
$OpenBSD: shortcuts.html,v 1.27 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/shortcuts.html (6 of 6)9/4/2011 10:04:29 AM

mailto:www@openbsd.org

PF: Runtime Options

OpenBSD

[Previous: Shortcuts For Creating Rulesets] [Contents] [Next: Anchors]

PF: Runtime Options

Options are used to control PF's operation. Options are specified in pf . conf usingtheset directive.

set bl ock-policy option
Sets the default behavior for filter rules that specify the bl ock action.
o dr op - packet is silently dropped.
o return-aTCPRST packet isreturned for blocked TCP packets and an ICMP Unreachabl e packet
isreturned for all others.
Note that individual filter rules can override the default response. The default isdr op.

set debug option
Set pf's debugging level.
o hone - no debugging messages are shown.
o ur gent - debug messages generated for serious errors.
o M sc - debug messages generated for various errors (e.g., to see status from the packet normalizer/
scrubber and for state creation failures).
o | oud - debug messages generated for common conditions (e.g., to see status from the passive OS
fingerprinter).
The defaultisur gent .

set fingerprints file
Setsthe file to load operating system fingerprints from. For use with passive OS fingerprinting. The default

is/ etc/ pf. os.

set limt option val ue
Set various limits on pf's operation.

o frags - maximum number of entriesin the memory pool used for packet reassembly (scrub rules).
Default is 5000.

o Src-nodes - maximum number of entries in the memory pool used for tracking source IP
addresses (generated by the st i cky- addr ess and sour ce-t r ack options). Default is 10000.

o St at es - maximum number of entriesin the memory pool used for state table entries (filter rules
that specify keep st at e). Default is 10000.

o tabl es - maximum number of tablesthat can be created. The default is 1000.

o tabl e-entri es -theoveral limit on how many addresses can be stored in all tables. The default
1S 200000. If the system has less than 100MB of physical memory, the default is set to 100000.

set loginterface interface

http://www.openbsd.org/fag/pf/options.html (1 of 3)9/4/2011 10:04:30 AM

http://www.openbsd.org/index.html

PF: Runtime Options

Sets the interface for which PF should gather statistics such as bytes in/out and packets passed/blocked.
Statistics can only be gathered for one interface at atime. Note that the mat ch, bad- of f set , etc.,
counters and the state table counters are recorded regardless of whether | ogi nt er f ace isset or not. To
turn this option off, set it to none. The default isnone.

set optim zation option
Optimize PF for one of the following network environments:
o nor mal - suitablefor aimost al networks.
o hi gh-1 at ency - high latency networks such as satellite connections.
o aggr essi ve - aggressively expires connections from the state table. This can greatly reduce the
memory requirements on abusy firewall at the risk of dropping idle connections early.
o conservati ve - extremely conservative settings. This avoids dropping idle connections at the
expense of greater memory utilization and slightly increased processor utilization.
The defaultisnor nmal .

set rul eset-optimzation option
Control operation of the PF ruleset optimizer.
o hone - disable the optimizer altogether.
o basi ¢ - enables the following ruleset optimizations:
1. remove duplicate rules
2. remove rules that are a subset of another rule
3. combine multiple rules into atable when advantageous
4. re-order the rulesto improve evaluation performance
o profil e -usesthe currently loaded ruleset as afeedback profile to tailor the ordering of quick
rules to actual network traffic.
Starting in OpenBSD 4.2, the default isbasi c. See pf.conf(5) for a more complete description.

set skip on interface
Skip all PF processingoni nt er f ace. This can be useful on loopback interfaces where filtering,
normalization, queueing, etc, are not required. This option can be used multiple times. By default this
option is not set.

set state-policy option
Sets PF's behavior when it comes to keeping state. This behavior can be overridden on a per rule basis. See
Keeping State.

o 1 f-bound - states are bound to the interface they're created on. If traffic matches a state table entry
but is not crossing the interface recorded in that state entry, the match is rejected. The packet must
then match afilter rule or will be dropped/rejected altogether.

o fl oati ng - states can match packets on any interface. Aslong as the packet matches a state entry
and is passing in the same direction as it was on the interface when the state was created, it does not
matter what interface it's crossing, it will pass.

Thedefaultisf | oat i ng.

set tineout option val ue
Set various timeouts (in seconds).
o I nterval - seconds between purges of expired states and packet fragments. The default is 10.

http://www.openbsd.org/fag/pf/options.html (2 of 3)9/4/2011 10:04:30 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.9

PF: Runtime Options

o frag - seconds before an unassembled fragment is expired. The default is 30.
o Src.track - secondsto keep a source tracking entry in memory after the last state expires. The

default isO (zero).

Example:

set tinmeout interval 10

set timeout frag 30

set limt { frags 5000, states 2500 }
set optim zation high-I| atency

set Dbl ock-policy return

set loginterface dcO

set fingerprints "/etc/pf.os.test"
set skip on |00

set state-policy if-bound

[Previous: Shortcuts For Creating Rulesets] [Contents] [Next: anchors]

ﬁ www @openbsd.org
$OpenBSD: options.html,v 1.25 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/options.html (3 of 3)9/4/2011 10:04:30 AM

mailto:www@openbsd.org

PF: Anchors

OpenBSD

[Previous. Runtime Options] [Contents] [Next: Packet Queueing and Prioritization]

PF: Anchors

Table of Contents

. Introduction

. Anchors

. Anchor Options

. Manipulating Anchors

Introduction

In addition to the main ruleset, PF can also evaluate sub rulesets. Since sub rulesets can be manipul ated
on the fly by using pfctl(8), they provide a convenient way of dynamically altering an active ruleset.
Whereas atable is used to hold adynamic list of addresses, a sub ruleset is used to hold a dynamic set of
rules. A sub ruleset is attached to the main ruleset by using an anchor .

Anchors can be nested which allows for sub rulesets to be chained together. Anchor rules will be
evaluated relative to the anchor in which they are loaded. For example, anchor rulesin the main ruleset
will create anchor attachment points with the main ruleset as their parent, and anchor rules loaded from
fileswiththel oad anchor directive will create anchor points with that anchor as their parent.

Anchors

An anchor isacollection of rules, tables, and other anchors that has been assigned a name. When PF
comes across an anchor rulein the main ruleset, it will evaluate the rules contained within the anchor
point as it evaluates rules in the main ruleset. Processing will then continue in the main ruleset unless the
packet matches afilter rule that uses the qui ck option, in which case the match will be considered final
and will abort the evaluation of rules in both the anchor and the main rulesets.

For example:

http://www.openbsd.org/fag/pf/anchors.html (1 of 5)9/4/2011 10:04:32 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Anchors

ext if = "fxp0O"

bl ock on $ext if
pass out on $ext if
anchor goodguys

Thisruleset sets adefault deny policy on f xp0O for both incoming and outgoing traffic. Traffic isthen
statefully passed out and an anchor ruleis created named goodguys. Anchors can be populated with
rules by three methods:

. usingal oad rule
. using pfctl(8)

. specifying the rulesinline of the main ruleset

Thel oad rule causes pf ct | to populate the specified anchor by reading rules from atext file. The
| oad rule must be placed after theanchor rule. Example:

anchor goodguys
| oad anchor goodguys from "/etc/anchor-goodguys-ssh”

To add rules to an anchor using pf ct | , the following type of command can be used:

echo "pass in proto tcp from192.0.2.3 to any port 22" \
| pfctl -a goodguys -f -

Rules can also be saved and loaded from atext file:

cat >> /etc/anchor-goodguys-ww
pass in proto tcp from192.0.2.3 to any port 80
pass in proto tcp from192.0.2.4 to any port { 80 443 }

pfctl -a goodguys -f /etc/anchor-goodguys-ww
To load rules directly from the main ruleset, enclose the anchor rulesin a brace-delimited block:

anchor "goodguys" {
pass in proto tcp from 192.168.2.3 to port 22
}

Inline anchors can also contain more anchors.

http://www.openbsd.org/fag/pf/anchors.html (2 of 5)9/4/2011 10:04:32 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Anchors

allow = "{ 192.0.2.3 192.0.2.4 }"

anchor "goodguys" {
anchor {
pass in proto tcp from192.0.2.3 to port 80

}

pass in proto tcp from$allow to port 22

}

With inline anchors the name of the anchor becomes optional. Note how the nested anchor in the above
example does not have a name. Also note how the macro $al | owis created outside of the anchor (in
the main ruleset) and is then used within the anchor.

Rules can be loaded into an anchor using the same syntax and options as rules loaded into the main
ruleset. One caveat, however, isthat unless you're using inline anchors any macros that are used must

also be defined within the anchor itself; macros that are defined in the parent ruleset are not visible from
the anchor.

Since anchors can be nested, it's possible to specify that all child anchors within a specified anchor be
evaluated:

anchor "spam *"

This syntax causes each rule within each anchor attached to the spamanchor to be evaluated. The child
anchors will be evaluated in alphabetical order but are not descended into recursively. Anchors are
always evaluated relative to the anchor in which they're defined.

Each anchor, aswell asthe main ruleset, exist separately from the other rulesets. Operations done on one
ruleset, such as flushing the rules, do not affect any of the others. In addition, removing an anchor point
from the main ruleset does not destroy the anchor or any child anchors that are attached to that anchor.
An anchor is not destroyed until it's flushed of all rules using pfctl(8) and there are no child anchors

within the anchor.

Anchor Options

Optionally, anchor rules can specify interface, protocol, source and destination address, tag, etc., using
the same syntax as other rules. When such information is given, anchor rulesare only processed if the
packet matchesthe anchor rule's definition. For example:

ext _if = "fxp0"
bl ock on $ext _if

http://www.openbsd.org/fag/pf/anchors.html (3 of 5)9/4/2011 10:04:32 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Anchors

pass out on $ext if
anchor ssh in on $ext if proto tcp to port 22

The rulesin the anchor ssh are only evaluated for TCP packets destined for port 22 that comein on
f xpO0. Rules are then added to theanchor like so:

echo "pass in from192.0.2.10 to any" | pfctl -a ssh -f -

So, even though the filter rule doesn't specify an interface, protocol, or port, the host 192.0.2.10 will
only be permitted to connect using SSH because of theanchor rule's definition.

The same syntax can be applied to inline anchors.

allow = "{ 192.0.2.3 192.0.2.4 }"

anchor "goodguys" in proto tcp {
anchor proto tcp to port 80 {
pass from 192.0. 2.3

}
anchor proto tcp to port 22 {

pass from $al | ow

}
}

Manipulating Anchors

Manipulation of anchorsis performed viapf ct | . It can be used to add and remove rules from an
anchor without rel oading the main ruleset.

To list dl the rules in the anchor named ssh:
pfctl -a ssh -s rules
To flush al rules from the same anchor:
pfctl -a ssh -F rules

For afull list of commands, please see pfctl(8).

[Previous. Runtime Options] [Contents] [Next: Packet Queueing and Prioritization]

http://www.openbsd.org/fag/pf/anchors.html (4 of 5)9/4/2011 10:04:32 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Anchors

& www@openbsd.org
$OpenBSD: anchors.html,v 1.30 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/anchors.html (5 of 5)9/4/2011 10:04:32 AM

mailto:www@openbsd.org

PF: Packet Queueing and Prioritization

OpenBSD

[Previous: Anchors] [Contents] [Next: Address Pools and Load Balancing]

PF: Packet Queueing and Prioritization

Table of Contents

. Queueing
. Schedulers
o Class Based Queueing
o Priority Queueing
» Random Early Detection
o Explicit Congestion Notification
Configuring Queueing
. Assigning Traffic to a Queue
. Example#1: Small, Home Network
. Example #2: Company Network

Queueing

To queue something isto storeit, in order, while it awaits processing. In a computer network, when data packets
are sent out from a host, they enter a queue where they await processing by the operating system. The operating
system then decides which queue and which packet(s) from that queue should be processed. The order in which the
operating system selects the packets to process can affect network performance. For example, imagine a user
running two network applications: SSH and FTP. Ideally, the SSH packets should be processed before the FTP
packets because of the time-sensitive nature of SSH; when akey istyped in the SSH client, an immediate response
Is expected, but an FTP transfer being delayed by afew extra seconds hardly bears any notice. But what happens if
the router handling these connections processes a large chunk of packets from the FTP connection before
processing the SSH connection? Packets from the SSH connection will remain in the queue (or possibly be
dropped by the router if the queue isn't big enough to hold all of the packets) and the SSH session may appear to
lag or slow down. By modifying the queueing strategy being used, network bandwidth can be shared fairly
between different applications, users, and computers.

Note that queueing is only useful for packets in the outbound direction. Once a packet arrives on an interface in the
inbound direction it's already too late to queue it -- it's already consumed network bandwidth to get to the interface
that just received it. The only solution is to enable queueing on the adjacent router or, if the host that received the
packet is acting as a router, to enable queueing on the internal interface where packets exit the router.

http://www.openbsd.org/fag/pf/queueing.html (1 of 13)9/4/2011 10:04:34 AM

http://www.openbsd.org/index.html

PF: Packet Queueing and Prioritization

Schedulers

The scheduler is what decides which queues to process and in what order. By default, OpenBSD uses aFirst In
First Out (FIFO) scheduler. A FIFO gueue works like the line-up at a supermarket's checkout -- the first item into
the queue isthe first processed. As new packets arrive they are added to the end of the queue. If the queue becomes
full, and here the analogy with the supermarket stops, newly arriving packets are dropped. Thisis known as tail-
drop.

OpenBSD supports two additional schedulers:

. Class Based Queueing
. Priority Queueing

Class Based Queueing

Class Based Queueing (CBQ) is aqueueing algorithm that divides a network connection's bandwidth among
multiple queues or classes. Each queue then has traffic assigned to it based on source or destination address, port
number, protocol, etc. A queue may optionally be configured to borrow bandwidth from its parent queue if the
parent is being under-utilized. Queues are al'so given a priority such that those containing interactive traffic, such
as SSH, can have their packets processed ahead of queues containing bulk traffic, such as FTP.

CBQ queues are arranged in an hierarchical manner. At the top of the hierarchy is the root queue which defines the
total amount of bandwidth available. Child queues are created under the root queue, each of which can be assigned
some portion of the root queue's bandwidth. For example, queues might be defined as follows:

Root Queue (2Mbps)
Queue A (1Mbps)
Queue B (500K bps)
Queue C (500K bps)

In this case, the total available bandwidth is set to 2 megabits per second (Mbps). This bandwidth is then split
among three child queues.

The hierarchy can further be expanded by defining queues within queues. To split bandwidth equally among
different users and also classify their traffic so that certain protocols don't starve others for bandwidth, a queueing
structure like this might be defined:

Root Queue (2Mbps)
UserA (1Mbps)
ssh (50K bps)
bulk (950K bps)
UserB (1Mbps)
audio (250K bps)
bulk (750K bps)
http (100K bps)

http://www.openbsd.org/fag/pf/queueing.html (2 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

other (650K bps)

Note that at each level the sum of the bandwidth assigned to each of the queues is not more than the bandwidth
assigned to the parent queue.

A gueue can be configured to borrow bandwidth from its parent if the parent has excess bandwidth available due to
it not being used by the other child queues. Consider a queueing setup like this:

Root Queue (2Mbps)
UserA (1Mbps)
ssh (100K bps)
ftp (900K bps, borrow)
UserB (1Mbps)

If trafficinthef t p queue exceeds 900K bps and traffic in the User A queueis less than 1IMbps (because the ssh
gueueisusing less than its assigned 100K bps), the f t p queue will borrow the excess bandwidth from User A. In
thisway thef t p queueis able to use more than its assigned bandwidth when it faces overload. When thessh
gueue increases its |oad, the borrowed bandwidth will be returned.

CBQ assigns each queue a priority level. Queues with ahigher priority are preferred during congestion over
gueues with alower priority aslong as both queues share the same parent (in other words, as long as both queues
are on the same branch in the hierarchy). Queues with the same priority are processed in a round-robin fashion. For
example:

Root Queue (2Mbps)
UserA (1IMbps, priority 1)
ssh (100K bps, priority 5)
ftp (900K bps, priority 3)
UserB (1IMbps, priority 1)

CBQ will processthe User A and User B queues in around-robin fashion -- neither queue will be preferred over
the other. During the time when the User A queue is being processed, CBQ will also processits child queues. In
this case, the ssh queue has a higher priority and will be given preferential treatment over thef t p queueif the
network is congested. Note how the ssh and f t p queues do not have their priorities compared to the User A and
User B queues because they are not all on the same branch in the hierarchy.

For amore detailed look at the theory behind CBQ, please see References on CBQ.

Priority Queueing

Priority Queueing (PRIQ) assigns multiple queues to a network interface with each queue being given a priority
level. A queue with a higher priority is always processed ahead of a queue with alower priority. If two or more
gueues are assigned the same priority then those queues are processed in a round-robin fashion.

The queueing structurein PRIQ isflat -- you cannot define queues within queues. The root queue is defined, which
sets the total amount of bandwidth that is available, and then sub queues are defined under the root. Consider the

http://www.openbsd.org/fag/pf/queueing.html (3 of 13)9/4/2011 10:04:34 AM

http://www.icir.org/floyd/cbq.html

PF: Packet Queueing and Prioritization

following example:

Root Queue (2Mbps)
Queue A (priority 1)
Queue B (priority 2)
Queue C (priority 3)

The root queue is defined as having 2Mbps of bandwidth available to it and three subqueues are defined. The
gueue with the highest priority (the highest priority number) is served first. Once all the packetsin that queue are
processed, or if the queue is found to be empty, PRIQ moves onto the queue with the next highest priority. Within
agiven queue, packets are processed in aFirst In First Out (FIFO) manner.

It isimportant to note that when using PRIQ you must plan your queues very carefully. Because PRIQ always
processes a higher priority queue before alower priority one, it's possible for a high priority queue to cause packets
in alower priority queue to be delayed or dropped if the high priority queue is receiving a constant stream of
packets.

Random Early Detection

Random Early Detection (RED) is a congestion avoidance algorithm. Itsjob isto avoid network congestion by
making sure that the queue doesn't become full. It does this by continually calculating the average length (size) of
the queue and comparing it to two thresholds, a minimum threshold and a maximum threshold. If the average
gueue size is below the minimum threshold then no packets will be dropped. If the average is above the maximum
threshold then all newly arriving packets will be dropped. If the average is between the threshold values then
packets are dropped based on a probability calculated from the average queue size. In other words, as the average
gueue size approaches the maximum threshold, more and more packets are dropped. When dropping packets, RED
randomly chooses which connections to drop packets from. Connections using larger amounts of bandwidth have a
higher probability of having their packets dropped.

RED is useful because it avoids a situation known as global synchronization and it is able to accommodate bursts
of traffic. Global synchronization refersto aloss of total throughput due to packets being dropped from several
connections at the same time. For example, if congestion occurs at a router carrying traffic for 10 FTP connections
and packets from all (or most) of these connections are dropped (as is the case with FIFO queueing), overall
throughput will drop sharply. Thisisn't an ideal situation because it causes all of the FTP connections to reduce
their throughput and also means that the network is no longer being used to its maximum potential. RED avoids
this by randomly choosing which connections to drop packets from instead of choosing all of them. Connections
using large amounts of bandwidth have a higher chance of their packets being dropped. In thisway, high
bandwidth connections will be throttled back, congestion will be avoided, and sharp losses of overall throughput
will not occur. In addition, RED is able to handle bursts of traffic because it starts to drop packets before the queue
becomes full. When a burst of traffic comes through there will be enough space in the queue to hold the new
packets.

RED should only be used when the transport protocol is capable of responding to congestion indicators from the
network. In most cases this means RED should be used to queue TCP traffic and not UDP or ICMP traffic.

For amore detailed look at the theory behind RED, please see References on RED.

http://www.openbsd.org/fag/pf/queueing.html (4 of 13)9/4/2011 10:04:34 AM

http://www.icir.org/floyd/red.html

PF: Packet Queueing and Prioritization

Explicit Congestion Notification

Explicit Congestion Notification (ECN) worksin conjunction with RED to notify two hosts communicating over
the network of any congestion along the communication path. It does this by enabling RED to set aflag in the
packet header instead of dropping the packet. Assuming the sending host has support for ECN, it can then read this
flag and throttle back its network traffic accordingly.

For more information on ECN, please refer to RFC 3168.

Configuring Queueing

Since OpenBSD 3.0 the Alternate Queueing (ALTQ) queueing implementation has been a part of the base system.
Starting with OpenBSD 3.3 ALTQ has been integrated into PF. OpenBSD's ALTQ implementation supports the
Class Based Queueing (CBQ) and Priority Queueing (PRIQ) schedulers. It also supports Random Early Detection
(RED) and Explicit Congestion Notification (ECN).

Because ALTQ has been merged with PF, PF must be enabled for queueing to work. Instructions on how to enable
PF can be found in Getting Started.

Queueing is configured in pf . conf . There are two types of directives that are used to configure queueing:

. al tg on - enables queueing on an interface, defines which scheduler to use, and creates the root queue
. queue - defines the properties of a child queue

The syntax for theal t @ on directiveis:

altqg on interface schedul er bandwidth bwglimt qglim\
t brsize size queue { queue_list }

. I nterface -the network interface to activate queueing on.

. schedul er - the queueing scheduler to use. Possible values are cbq and pr i g. Only one scheduler may
be active on an interface at atime.

. bw- thetotal amount of bandwidth available to the scheduler. This may be specified as an absolute value
using the suffixes b, Kb, Mo, and Go to represent bits, kilobits, megabits, and gigabits per second,
respectively or as a percentage of thei nt er f ace bandwidth.

« gl i m-the maximum number of packetsto hold in the queue. This parameter is optional. The default is 50.

. Si ze - the size of the token bucket regulator in bytes. If not specified, the sizeis set based on the
I nt er f ace bandwidth.

. queue_li st -alist of child queuesto create under the root queue.

For example:

altg on fxp0 cbg bandwi dt h 2Mb queue { std, ssh, ftp }

http://www.openbsd.org/fag/pf/queueing.html (5 of 13)9/4/2011 10:04:34 AM

http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.csl.sony.co.jp/person/kjc/kjc/software.html#ALTQ
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.9

PF: Packet Queueing and Prioritization

This enables CBQ on the f xpO0 interface. The total bandwidth available is set to 2Mbps. Three child queues are
defined: st d, ssh,andft p.

The syntax for the queue directiveis:

queue nane [on interface] bandwidth bw [priority pri] [qglimt

glin \

schedul er (sched options) { queue_list }

. hane - the name of the queue. This must match the name of one of the queuesdefinedintheal t g on
directive'squeue_| i st . For cbq it can aso match the name of a queue in a previous queue directive's
gueue_| i st. Queue names must be no longer than 15 characters.

. i nterface -thenetwork interface that the queueisvalid on. Thisvalueis optional, and when not
specified, will make the queue valid on all interfaces.

. bw- thetotal amount of bandwidth available to the queue. This may be specified as an absolute value using
the suffixes b, Kb, Mo, and Gb to represent bits, kilobits, megabits, and gigabits per second, respectively or
as a percentage of the parent queue's bandwidth. This parameter is only applicable when using the cbq
scheduler. If not specified, the default is 100% of the parent queue's bandwidth.

. pri -thepriority of the queue. For cbq the priority rangeisOto 7 and for pri q therangeisOto 15.
Priority O isthe lowest priority. When not specified, adefault of 1 is used.

« gl i m- the maximum number of packetsto hold in the queue. When not specified, a default of 50 is used.

. schedul er - the scheduler being used, either cbq or pri q. Must be the same as the root queue.

. sched_opti ons - further options may be passed to the scheduler to control its behavior:

o def aul t - defines adefault queue where all packets not matching any other queue will be queued.
Exactly one default queue is required.

o red - enables Random Early Detection (RED) on this queue.

o i o -enables RED with IN/OUT. In thismode, RED will maintain multiple average queue lengths
and multiple threshold values, one for each IP Quality of Service level.

o ecn - enables Explicit Congestion Notification (ECN) on this queue. Ecn impliesr ed.

o bor r ow- the queue can borrow bandwidth from its parent. This can only be specified when using
the cbq scheduler.

. queue_li st -alist of child queuesto create under this queue. A queue_| i st may only be defined
when using the cbq scheduler.

Continuing with the example above:

queue std bandw dth 50% cbq(default)

queue ssh bandwi dth 25%{ ssh_login, ssh _bulk }
gueue ssh_login bandwi dth 25% priority 4 cbq(ecn)
gqueue ssh_bul k bandw dth 75% cbqg(ecn)

queue ftp bandw dth 500Kb priority 3 cbqg(borrow red)

Here the parameters of the previously defined child queues are set. The st d queue is assigned a bandwidth of 50%
of the root queue's bandwidth (or IMbps) and is set as the default queue. The ssh queueis assigned 25% of the
root queue's bandwidth (500kb) and also contains two child queues, ssh_| ogi nandssh_bul k. The

ssh_I ogi n queueisgiven ahigher priority than ssh_bul k and both have ECN enabled. Thef t p queueis

http://www.openbsd.org/fag/pf/queueing.html (6 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

assigned a bandwidth of 500K bps and given apriority of 3. It can also borrow bandwidth when extrais available
and has RED enabled.

NOTE: Each child queue definition has its bandwidth specified. Without specifying the bandwidth, PF will give
the queue 100% of the parent queue's bandwidth. In this situation, that would cause an error when the rules are

loaded since if there's a queue with 100% of the bandwidth, no other queue can be defined at that level since there
Is no free bandwidth to allocate to it.

Assigning Traffic to a Queue

To assign traffic to a queue, the queue keyword is used in conjunction with PF'sfilter rules. For example,
consider a set of filtering rules containing aline such as:

pass out on fxp0 proto tcp to port 22
Packets matching that rule can be assigned to a specific queue by using the queue keyword:
pass out on fxp0 proto tcp to port 22 queue ssh

When a state table entry is created by this rule, PF will record the queue in the state table entry; thiswill be used
for other packets permitted by the entry:

pass in on fxp0 proto tcp to port 80 queue http

With thisrule, packets traveling back out f xpO that match the stateful connection will end up inthe ht t p queue.
Note that even though the queue keyword is being used on arule filtering incoming traffic, the goal is to specify
a queue for the corresponding outgoing traffic; the above rule does not queue incoming packets.

When using the queue keyword with bl ock directives, any resulting TCP RST or ICMP Unreachabl e packets
are assigned to the specified queue.

Note that queue designation can happen on an interface other than the one defined intheal t g on directive:

altqg on fxp0 cbg bandwi dth 2Mb queue { std, ftp }
queue std bandw dth 500Kb cbq(defaul t)
queue ftp bandwi dth 1.5M

pass in on dcO proto tcp to port 21 queue ftp

Queueing is enabled on f xp0 but the designation takes place on dcO. If packets matching the pass rule (or the
state created by thisrule) exit from interface f xpO0, they will be queued in thef t p queue. Thistype of queueing
can be very useful on routers.

Normally only one queue name is given with the queue keyword, but if a second name is specified that queue
will be used for packets with a Type of Service (ToS) of low-delay and for TCP ACK packets with no data

http://www.openbsd.org/fag/pf/queueing.html (7 of 13)9/4/2011 10:04:34 AM

http://www.rfc-editor.org/rfc/rfc791.txt

PF: Packet Queueing and Prioritization

payload. A good example of thisisfound when using SSH. SSH login sessions will set the ToS to low-delay while
SCP and SFTP sessions will not. PF can use this information to queue packets belonging to alogin connection in a
different queue than non-login connections. This can be useful to prioritize login connection packets over file
transfer packets.

pass out on fxp0 fromany to any port 22 queue(ssh_bul k, ssh_Iogin)

This assigns packets belonging to SSH login connectionsto thessh_| ogi n queue and packets belonging to SCP
and SFTP connectionsto thessh_bul k queue. SSH login connections will then have their packets processed
ahead of SCP and SFTP connections because thessh_I| ogi n queue has ahigher priority.

Assigning TCP ACK packetsto a higher priority queueis useful on asymmetric connections, that is, connections
that have different upload and download bandwidths such as ADSL lines. With an ADSL line, if the upload
channel is being maxed out and a download is started, the download will suffer because the TCP ACK packets it
needs to send will run into congestion when they try to pass through the upload channel. Testing has shown that to
achieve the best results, the bandwidth on the upload queue should be set to a value less than what the connection
Is capable of. For instance, if an ADSL line has a max upload of 640K bps, setting the root queue's bandwi dt h to
avalue such as 600K b should result in better performance. Trial and error will yield the best bandwi dt h setting.

Example #1: Small, Home Network

R TR oo -- oo - dcO [OpenBSD] fxp0O -------- (Internet)

In this example, OpenBSD is being used on an Internet gateway for a small home network with three workstations.
The gateway is performing packet filtering and NAT duties. The Internet connection isviaan ADSL line running
at 2Mbps down and 640K bps up.

The queueing policy for this network:

. Reserve 80K bps of download bandwidth for Bob so he can play his online games without being lagged by
Alice or Charlie's downloads. Allow Bob to use more than 80K bps when it's available.

. Interactive SSH and instant message traffic will have a higher priority than regular traffic.

. DNS queries and replies will have the second highest priority.

. Outgoing TCP ACK packets will have a higher priority than all other outgoing traffic.

Below isthe ruleset that meets this network policy. Note that only the pf . conf directivesthat apply directly to
the above policy are present.

http://www.openbsd.org/fag/pf/queueing.html (8 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

enabl e queueing on the external interface to control traffic going to
the Internet. use the priq scheduler to control only priorities. set
the bandwi dth to 610Kbps to get the best performance out of the TCP
ACK queue.

altqg on fxpO priq bandw dth 610Kb queue { std out, ssh_imout, dns_out, \
tcp_ack _out }

define the paraneters for the child queues.

std_out - the standard queue. any filter rule bel ow that does not
explicitly specify a queue will have its traffic added
to this queue.

ssh_i m out - interactive SSH and various instant nessage traffic.

dns_out - DNS queri es.

tcp_ack_out - TCP ACK packets with no data payl oad.

gueue std_out prig(default)

queue ssh_imout priority 4 priq(red)

gueue dns_out priority 5

gueue tcp_ack out priority 6

enabl e queueing on the internal interface to control traffic comng in
fromthe Internet. use the cbq scheduler to control bandw dth. max

bandw dth is 2Mops.

altqg on dcO cbq bandw dth 2Mb queue { std_in, ssh_imin, dns_in, bob_in }

define the paraneters for the child queues.
std in - the standard queue. any filter rule below that does not
explicitly specify a queue will have its traffic added

to this queue.

HHFHHFHFHHTEH

ssh_imin - interactive SSH and various instant nmessage traffic.

dns_in - DNS replies.

bob_in - bandwi dth reserved for Bob's workstation. allow himto
bor r ow.

gqueue std_ in bandwi dth 1. 6My cbqg(default)
gqueue ssh_im.in bandw dth 200Kb priority 4
gueue dns_in bandwi dth 120Kb priority 5
gqueue bob_in bandw dt h 80Kb cbq(borrow)

... inthe filtering section of pf.conf
alice = "192.168.0. 2"
bob = "192.168.0. 3"
charlie = "192. 168. 0. 4"

http://www.openbsd.org/fag/pf/queueing.html (9 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

| ocal _net = "192. 168. 0. 0/ 24"
ssh_ports = "{ 22 2022 }"
I mports = "{ 1863 5190 5222 }"

filter rules for fxpO inbound
bl ock in on fxp0O al

filter rules for fxpO outbound

bl ock out on fxpO al

pass out on fxp0 inet proto tcp from (fxp0) queue(std_out, tcp_ack_ out)

pass out on fxpO inet proto { udp icnp } from (fxp0)

pass out on fxpO inet proto { tcp udp } from (fxp0O) to port domain \
gueue dns_out

pass out on fxp0O inet proto tcp from (fxp0) to port $ssh ports \
queue(std_out, ssh_imout)

pass out on fxpO inet proto tcp from (fxp0) to port $imports \
queue(ssh_imout, tcp_ack out)

filter rules for dcO i nbound
bl ock in on dcO al
pass in on dcO from $l ocal _net

filter rules for dcO out bound

bl ock out on dcO al

pass out on dcO to $l ocal _net

pass out on dcO proto { tcp udp } fromport domain to $local net \
gueue dns_in

pass out on dcO proto tcp fromport $ssh_ports to $l ocal net \
queue(std_in, ssh_ imin)

pass out on dcO proto tcp fromport $imports to $l ocal _net \
queue ssh_imin

pass out on dcO to $bob queue bob_in

Example #2: Company Network

(1T Dept) [Boss's PC]

| | T1
R R dcO [OpenBSD] fxp0O -------- (I'nternet)
| fxpl
[COWP1] [VWAW] /

http://www.openbsd.org/fag/pf/queueing.html (10 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

In this example, the OpenBSD host is acting as a firewall for a company network. The company runs a WWW
server in the DMZ portion of their network where customers upload their websitesvia FTP. The IT department has
their own subnet connected to the main network, and the boss has a PC on his desk that's used for email and
surfing the web. The connection to the Internet isviaa T1 line running at 1.5Mbps in both directions. All other
network segments are using Fast Ethernet (100M bps).

The network administrator has decided on the following policy:

. Limit al traffic between the WWW server and the Internet to 500K bps in each direction.
o Allot 250K bpsto HTTP traffic.
o Allot 250K bpsto "other" traffic (i.e., non-HTTP traffic)
o Allow either queue to borrow up to the full 500K bps.
o Give HTTP traffic between the WWW server and the Internet a higher priority than other traffic
between the WWW server and the Internet (such as FTP uploads).
. Traffic between the WWW server and the internal network can use up to the full 200Mbps that the network
offers.
. Reserve 500K bpsfor the IT Dept network so they can download the |atest software updates in atimely
manner. They should be able to use more than 500K bps when extra bandwidth is available.
. Givetraffic between the boss's PC and the Internet a higher priority than other traffic to/from the Internet.

Below isthe ruleset that meets this network policy. Note that only the pf . conf directivesthat apply directly to
the above policy are present; nat , r dr , options, etc., are not shown.

enabl e queueing on the external interface to queue packets goi ng out
to the Internet. use the cbg schedul er so that the bandw dth use of
each queue can be controlled. the max outgoi ng bandw dth is 1.5Mops.

altg on fxp0 cbg bandwi dth 1.5M queue { std_ext, wwv ext, boss_ext }

define the paraneters for the child queues.

std_ext - the standard queue. also the default queue for

outgoing traffic on fxpO.

ww_ext - container queue for WNWVserver queues. limt to

H# 500Kbps.

ww _ext _http - http traffic fromthe WWVserver; higher priority.
www _ext_msc - all non-http traffic fromthe WAV server.

boss_ext - traffic comng fromthe boss's conputer.

gueue std_ext bandw dt h 500Kb cbqg(default borrow)

gueue www_ext bandw dt h 500Kb { www ext http, www ext _m sc }

gqueue www_ext http bandwi dth 50% priority 3 cbqg(red borrow)
queue www_ext _m sc bandwi dth 50% priority 1 cbq(borrow
queue boss_ext bandw dt h 500Kb priority 3 cbq(borrow)

enabl e queueing on the internal interface to control traffic com ng
fromthe Internet or the DMZ. use the cbg scheduler to control the
bandw dt h of each queue. bandwi dth on this interface is set to the

http://www.openbsd.org/fag/pf/queueing.html (11 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

maximum traffic comng fromthe DMZ will be able to use all of this
bandw dth while traffic comng fromthe Internet will be limted to
1. OMops (because 0.5Mops (500Kbps) is being allocated to fxpl).

altqg on dcO cbq bandw dth 100% queue { net _int, ww_int }

define the paraneters for the child queues.

net _int - container queue for traffic fromthe Internet. bandw dth
s 1. OMops.

std_int - the standard queue. also the default queue for outgoing
1 traffic on dcO.

it_int - traffic to the IT Dept network; reserve them 500Kbps.

boss_int - traffic to the boss's PC, assign a higher priority.

ww i nt - traffic fromthe WWVserver in the DMZ; full speed.
gueue net _int bandwi dth 1.0Mo { std_int, it _int, boss_int }

queue std_int bandw dth 250Kb cbqg(default borrow)
queue it _int bandw dt h 500Kb cbq(borrow)
queue boss_int bandwi dth 250Kb priority 3 cbqg(borrow

gqueue www_i nt bandwi dth 99Mb cbq(red borrow)

enabl e queueing on the DVZ interface to control traffic destined for
the WMV server. cbg will be used on this interface since detail ed

control of bandw dth is necessary. bandwidth on this interface is set
to the maximum traffic fromthe internal network will be able to use
all of this bandwidth while traffic fromthe Internet will be limted
to 500Kbps.

altq on fxpl cbqg bandwi dth 100% queue { internal _dne, net_dnz }

define the paraneters for the child queues.

internal _dne - traffic fromthe internal network

net _dnz - container queue for traffic fromthe Internet.

net _dnez_http - http traffic; higher priority.

net_dnz_msc - all non-http traffic. this is also the default queue.

queue internal _dne bandwi dt h 99Mby cbq(bor r ow)

queue net _dnz bandwi dt h 500Kb { net _dnez_http, net_dnz_m sc }
queue net_dnz_http bandw dth 50% priority 3 chbqg(red borrow)
gueue net _dnz_m sc bandw dth 50% priority 1 cbq(default borrow)

... in the filtering section of pf.conf

mai n_net = "192.168. 0.0/ 24"

iIt_net = "192.168. 1.0/ 24"

int_nets = "{ 192.168.0.0/24, 192.168.1.0/24 }"

http://www.openbsd.org/fag/pf/queueing.html (12 of 13)9/4/2011 10:04:34 AM

PF: Packet Queueing and Prioritization

dnz_net = "10.0.0.0/ 24"
boss = "192.168. 0. 200"
WWWS er v = "10.0.0. 100"

default deny
bl ock on { fxp0, fxpl, dcO } al

filter rules for fxpO inbound
pass in on fxp0 proto tcp fromany to $wwserv port { 21, \
> 49151 } queue www_ext _mi sc
pass in on fxpO proto tcp fromany to $wwserv port 80 queue www_ext _http

filter rules for fxpO0 outbound
pass out on fxp0O from $int _nets
pass out on fxpO0 from $boss queue boss_ext

filter rules for dcO inbound

pass in on dcO from $int_nets

pass in on dcO from$it_net queue it_int

pass in on dcO from $boss queue boss i nt

pass in on dcO proto tcp from$int _nets to $wwserv port { 21, 80, \
> 49151 } queue www_i nt

filter rules for dcO outbound
pass out on dcO fromdcO to $int_nets

filter rules for fxpl i nbound
pass in on fxpl proto { tcp, udp } from $wwserv to port 53

filter rules for fxpl outbound
pass out on fxpl proto tcp to $wwserv port { 21, \
> 49151 } queue net_dnz_m sc
pass out on fxpl proto tcp to $wwwserv port 80 queue net_dnez_http
pass out on fxpl proto tcp from3$int_nets to $wwserv port { 80, \
21, > 49151 } queue internal _dne

[Previous: Anchors] [Contents] [Next: Address Pools and Load Balancing]

& www @openbsd.org
$OpenBSD: queueing.html,v 1.41 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/queueing.html (13 of 13)9/4/2011 10:04:34 AM

mailto:www@openbsd.org

PF: Address Pools and Load Balancing

OpenBSD

[Previous: Packet Queueing and Prioritization] [Contents] [Next: Packet Tagging]

PF. Address Pools and Load Balancing

Table of Contents

. Introduction
. NAT Address Pooal
. Load Balancing Incoming Connections
. Load Balancing Outgoing Traffic
» Ruleset Example

Introduction

An address pool isasupply of two or more addresses whose use is shared among a group of users. An address pool
can be specified asthe target addressinnat -t o, rdr-t o,rout e-t o, repl y-t o, and dup- t o filter options.

There are four methods for using an address pool:

. bi t mask - grafts the network portion of the pool address over top of the address that is being modified
(source addressfor nat - t o rules, destination addressfor r dr - t o rules). Example: if the address pool is
192.0.2.1/24 and the address being modified is 10.0.0.50, then the resulting address will be 192.0.2.50. If
the address pool is 192.0.2.1/25 and the address being modified is 10.0.0.130, then the resulting address
will be 192.0.2.2.

. random- randomly selects an address from the pool.

. sour ce- hash - uses ahash of the source address to determine which address to use from the pool. This
method ensures that a given source address is always mapped to the same pool address. The key that is fed
to the hashing algorithm can optionally be specified after the sour ce- hash keyword in hex format or as
astring. By default, pfctl(8) will generate arandom key every time the ruleset is loaded.

. round-r obi n - loops through the address pool in sequence. Thisis the default method and also the only
method allowed when the address pool is specified using atable.

Except for ther ound- r obi n method, the address pool must be expressed as a CIDR (Classless Inter-Domain

Routing) network block. Ther ound- r obi n method will accept multiple individual addresses using alist or
table.

http://www.openbsd.org/fag/pf/pools.html (1 of 4)9/4/2011 10:04:36 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9
http://public.pacbell.net/dedicated/cidr.html

PF: Address Pools and Load Balancing

Thest i cky- addr ess option can be used with ther andomand r ound- r obi n pool types to ensure that a
particular source address is always mapped to the same redirection address.

NAT Address Pool

An address pool can be used as the trandlation addressin nat - t o rules. Connections will have their source

address tranglated to an address from the pool based on the method chosen. This can be useful in situations where
PF is performing NAT for avery large network. Since the number of NATed connections per translation addressis
limited, adding additional tranglation addresses will allow the NAT gateway to scale to serve alarger number of
users.

In this example a pool of two addresses is being used to tranglate outgoing packets. For each outgoing connection
PF will rotate through the addresses in a round-robin manner.

mat ch out on $ext _if inet nat-to { 192.0.2.5, 192.0.2.10 }

One drawback with this method is that successive connections from the same internal address will not always be
trandated to the same tranglation address. This can cause interference, for example, when browsing websites that
track user logins based on IP address. An alternate approach isto use the sour ce- hash method so that each

internal addressis always trandlated to the same tranglation address. To do this, the address pool must be a CIDR

network block.
mat ch out on $ext if inet nat-to 192.0. 2.4/ 31 source-hash

This rule uses the address pool 192.0.2.4/31 (192.0.2.4 - 192.0.2.5) as the tranglation address for outgoing packets.
Each internal address will always be translated to the same trandl ation address because of the sour ce- hash

keyword.
Load Balance Incoming Connections

Address pools can a'so be used to load bal ance incoming connections. For example, incoming web server
connections can be distributed across a web server farm:

web_servers = "{ 10.0.0.10, 10.0.0.11, 10.0.0.13 }"

match in on $ext if proto tcp to port 80 rdr-to $web_servers \
round-robin sticky-address

Successive connections will be redirected to the web serversin around-robin manner with connections from the
same source being sent to the same web server. This "sticky connection™ will exist aslong as there are states that
refer to this connection. Once the states expire, so will the sticky connection. Further connections from that host

will be redirected to the next web server in the round robin.

Load Balance Outgoing Traffic

http://www.openbsd.org/fag/pf/pools.html (2 of 4)9/4/2011 10:04:36 AM

http://public.pacbell.net/dedicated/cidr.html

PF: Address Pools and Load Balancing

Address pools can be used in combination with ther out e- t o filter option to load balance two or more Internet
connections when a proper multi-path routing protocol (like BGP4) is unavailable. By using r out e- t o witha

r ound- r obi n address pool, outbound connections can be evenly distributed among multiple outbound paths.

One additional piece of information that's needed to do thisis the | P address of the adjacent router on each Internet
connection. Thisisfed to ther out e- t o option to control the destination of outgoing packets.

The following example balances outgoing traffic across two I nternet connections:

| an_net = "192.168. 0. 0/ 24"

int if = "dc0"

ext ifl = "fxp0"

ext if2 = "fxpl"

ext_gwl = "68.146.224. 1"

ext_gw2 = "142.59.76.1"

pass in on $int_if from$lan_net \ route-to { ($ext_ifl

$ext _gwl), (Sext_if2 $ext _gw2) } \ round- r obi n

Ther out e- t 0 option isused on traffic coming in on the internal interface to specify the outgoing network
interfaces that traffic will be balanced across along with their respective gateways. Note that ther out e-t o
option must be present on each filter rule that traffic is to be balanced for (it cannot be used with mat ch rules).

To ensure that packets with a source address belonging to $ext _i f 1 are alwaysrouted to $ext _gwl (and
similarly for $ext _i f 2 and $ext _gw2), the following two lines should be included in the ruleset:

pass out on $ext ifl from$ext if2 \
route-to ($ext _if2 $ext_gw2)

pass out on $ext if2 from$ext ifl \
route-to ($ext _ifl $ext_gwl)

Finally, NAT can also be used on each outgoing interface:

mat ch out on $ext _ifl from $lan_net nat-to ($ext _if1l)
mat ch out on $ext_if2 from $l an_net nat-to ($ext_if2)

A complete example that load balances outgoing traffic might look something like this:

http://www.openbsd.org/fag/pf/pools.html (3 of 4)9/4/2011 10:04:36 AM

http://www.rfc-editor.org/rfc/rfc1771.txt

PF: Address Pools and Load Balancing

| an_net = "192.168. 0. 0/ 24"
int if = "dcO"

ext_ifl = "fxp0"

ext_if2 = "fxpl"

ext_gwl = "68.146.224. 1"
ext_gw2 = "142.59.76. 1"

nat outgoing connections on each internet interface
match out on $ext _ifl from$lan_net nat-to ($ext _ifl)
match out on $ext _if2 from $lan_net nat-to ($ext_if2)

default deny
bl ock in
bl ock out

pass all outgoing packets on internal interface

pass out on $int if to $lan_net

pass in quick any packets destined for the gateway itself

pass in quick on $int_if from$lan_net to $int_if

| oad bal ance outgoing traffic frominternal network.

pass in on $int_if from $l an_net \
route-to { ($ext ifl $ext gwl), ($ext if2 $ext gw2) } \
round-robin

keep https traffic on a single connection; sonme web applications,

especially "secure" ones, don't allowit to change m d-session

pass in on $int _if proto tcp from$lan_net to port https \
route-to ($ext _ifl $ext_gwl)

general "pass out" rules for external interfaces
pass out on $ext _ifl
pass out on $ext _if2

route packets fromany IPs on $ext_ifl to $ext_gwl and the sane for
SPext _if2 and $ext _gw2

pass out on $ext ifl from$ext _if2 route-to ($ext _if2 $ext gw2)

pass out on $ext if2 from$ext _ifl route-to ($ext ifl $ext gwl)

[Previous: Packet Queueing and Prioritization] [Contents] [Next: Packet Tagging]

& www @openbsd.org
$OpenBSD: pools.html,v 1.28 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/pools.html (4 of 4)9/4/2011 10:04:36 AM

mailto:www@openbsd.org

PF: Packet Tagging (Policy Filtering)

OpenBSD

[Previous: Address Pools and Load Balancing] [Contents] [Next: Logging]

PF:. Packet Tagging (Policy Filtering)

Table of Contents

. Introduction

. Assigning Tags to Packets
. Checking for Applied Tags
. Policy Filtering

. Tagging Ethernet Frames

Introduction

Packet tagging is away of marking packets with an internal identifier that can later be used in filter and translation
rule criteria. With tagging, it's possible to do such things as create "trusts" between interfaces and determine if
packets have been processed by translation rules. It's also possible to move away from rule-based filtering and to
start doing policy-based filtering.

Assigning Tags to Packets
To add atag to a packet, use thet ag keyword:

pass in on $int_if all tag | NTERNAL_NET keep state
Thetag | NTERNAL_NET will be added to any packet which matches the above rule.
A tag can also be assigned using a macro. For instance:

name = "| NTERNAL NET"
pass in on $int _if all tag $nane

There are a set of predefined macros which can also be used.

. $i f - Theinterface
. $srcaddr - Source IP address

http://www.openbsd.org/fag/pf/tagging.html (1 of 5)9/4/2011 10:04:38 AM

http://www.openbsd.org/index.html

PF: Packet Tagging (Policy Filtering)

. $dst addr - Destination |P address

. $srcport - The source port specification

. $dst port - Thedestination port specification
. $prot o - The protocol

« $nr - The rule number

These macros are expanded at ruleset load time and NOT at runtime.
Tagging follows these rules:

. Tagsare"sticky". Once atag is applied to a packet by a matching rule it is never removed. It can, however,
be replaced with a different tag.

. Because of atag's"stickiness', a packet can have atag even if the last matching rule doesn't usethet ag
keyword.

. A packet is only ever assigned a maximum of onetag at atime.

. Tagsareinternal identifiers. Tags are not sent out over the wire.

. Tag names can be up to 63 characterslong. In OpenBSD 4.0 and earlier, tag names are limited to 15
characters.

Take the following ruleset as an example.

(1) pass inon $int_if tag | NT_NET
(2) pass in quick on $int_if proto tcp to port 80 tag | NT_NET_HTTP
(3) pass in quick on $int_if from192.168.1.5

. Packetscominginon $i nt _i f will beassigned atag of | NT_NET by rule #1.

. TCP packetscominginon $i nt _i f and destined for port 80 will first be assigned atag of | NT_NET by
rule #1. That tag will then be replaced with the | NT_NET_HTTP tag by rule #2.

. Packetscominginon$i nt _i f from 192.168.1.5 will be tagged one of two ways. If the packet is destined
for TCP port 80 it will match rule #2 and be tagged with | NT_NET_HTTP. Otherwise, the packet will
match rule #3 but will be tagged with | NT_NET. Because the packet matches rule #1, the | NT_NET tag is
applied and is not removed unless a subsequently matching rule specifies atag (thisisthe "stickiness' of a

tag).
Checking for Applied Tags
To check for previously applied tags, usethet agged keyword:

pass out on $ext if tagged | NT_NET

Outgoing packets on $ext _i f must be tagged with the | NT_NET tag in order to match the above rule. Inverse
matching can also be done by using the ! operator:

pass out on $ext if ! tagged WFI _NET

http://www.openbsd.org/fag/pf/tagging.html (2 of 5)9/4/2011 10:04:38 AM

PF: Packet Tagging (Policy Filtering)
Policy Filtering

Policy filtering takes a different approach to writing afilter ruleset. A policy is defined which sets the rules for
what types of traffic is passed and what types are blocked. Packets are then classified into the policy based on the
traditional criteria of source/destination |P address/port, protocol, etc. For example, examine the following firewall

policy:

. Traffic fromtheinternal LAN to the Internet is permitted (LAN_INET) and must be translated
(LAN_INET_NAT)

. Traffic fromtheinternal LAN to the DMZ is permitted (LAN_DMZ)

. Traffic from the Internet to serversin the DMZ is permitted (INET_DMZ)

. Traffic from the Internet that's being redirected to spamd(8) is permitted (SPAMD)

. All other traffic is blocked

Note how the policy covers all traffic that will be passing through the firewall. The item in parenthesis indicates
the tag that will be used for that policy item.

Rules now need to be written to classify packets into the policy.

bl ock all
pass out on $ext if tag LAN_I NET_NAT tagged LAN I NET nat-to
($ext _if)
pass in on $int_if from$int_net tag LAN_| NET
pass in on $int_if from$int_net to $dnz_net tag LAN DVZ
pass in on $ext _if proto tcp to $ww _server port 80 tag | NET_DWZ
pass in on $ext _if proto tcp from<spand> to port sntp \
tag SPAMD rdr-to 127.0.0.1 port 8025

Now the rules that define the policy are set.

pass in quick on $ext_if tagged SPANVD

pass out quick on $ext if tagged LAN | NET_NAT

pass out quick on $dnz_if tagged LAN DWVZ

pass out quick on $dnz_if tagged | NET_DWZ
Now that the whole ruleset is setup, changes are a matter of modifying the classification rules. For example, if a
POP3/SMTP server is added to the DMZ, it will be necessary to add classification rules for POP3 and SMTP
traffic, like so:

mai | _server = "192.168.0. 10"

pass in on $ext_if proto tcp to $mail_server port { sntp, pop3 } \
tag | NET_DwZ

Email traffic will now be passed as part of the INET_DMZ policy entry.

http://www.openbsd.org/fag/pf/tagging.html (3 of 5)9/4/2011 10:04:38 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=spamd&sektion=8

PF: Packet Tagging (Policy Filtering)

The compl ete ruleset:

nmacr os

int_ if = "dcO"

dnez _if = "dcl"

ext _if = "epO"

int_net = "10.0.0.0/24"
dnz_net = "192.168. 0. 0/ 24"
wwv_server = "192.168.0.5"

mai | _server = "192.168.0.10"

tabl e <spand> persist file "/etc/spanmers”

classification -- classify packets based on the defined firewall

policy.

bl ock al

pass out on $ext if tag LAN I NET_NAT tagged LAN I NET nat-to ($ext if)
pass in on $int_if from$int _net tag LAN | NET

pass in on $int _if from3$int _net to $dnz_net tag LAN DWVZ

pass in on $ext_if proto tcp to $www_server port 80 tag | NET_DW
pass in on $ext _if proto tcp from<spand> to port snmtp \

tag SPAMD rdr-to 127.0.0.1 port 8025

policy enforcenment -- pass/block based on the defined firewall policy.
pass in quick on $ext_if tagged SPAMD

pass out quick on $ext if tagged LAN | NET_NAT

pass out quick on $dnz_if tagged LAN DWZ

pass out quick on $dnz_if tagged | NET_DWZ

Tagging Ethernet Frames

Tagging can be performed at the Ethernet level if the machine doing the tagging/filtering is also acting as a bridge
(4). By creating bridge(4) filter rules that use thet ag keyword, PF can be made to filter based on the source or
destination MAC address. Bridge(4) rules are created using the ifconfig(8) command. Example:

ifconfig bridgeO rule pass in on fxp0O src 0:de:ad:be:ef:0 \
t ag USER1

Andtheninpf. conf:

http://www.openbsd.org/fag/pf/tagging.html (4 of 5)9/4/2011 10:04:38 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=bridge&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8

PF: Packet Tagging (Policy Filtering)
pass in on fxp0 tagged USER1

[Previous: Address Pools and Load Balancing] [Contents] [Next: Logging]

& www @openbsd.org
$OpenBSD: tagging.html,v 1.21 2011/01/28 07:42:23 sthen Exp $

http://www.openbsd.org/fag/pf/tagging.html (5 of 5)9/4/2011 10:04:38 AM

mailto:www@openbsd.org

PF: Logging

OpenBSD

[Previous: Packet Tagging] [Contents] [Next: Performance]

PF: Logging

Table of Contents

. Introduction

. Logging Packets

. ReadingaloqFile

. Filtering Log Output

. Packet Logging Through Syslog

Introduction

When a packet islogged by PF, a copy of the packet header is sent to a pflog(4) interface along with

some additional data such as the interface the packet was transiting, the action that PF took (pass or
block), etc. The pflog(4) interface allows user-space applications to receive PF's logging data from the
kernel. If PF is enabled when the system is booted, the pflogd(8) daemon is started. By default pflogd(8)

listens on the pf | 0ogO0 interface and writes all logged datato the/ var /| og/ pf | og file.

Logging Packets

In order to log packets passing through PF, the |l og keyword must be used. Thel og keyword causes all
packets that match the rule to be logged. In the case where the rule is creating state, only the first packet

seen (the one that causes the state to be created) will be logged.

The options that can be given to the | og keyword are:

al |
Causes all matching packets, not just the initial packet, to be logged. Useful for rules that create
state.

to pfl ogN

http://www.openbsd.org/fag/pf/logging.html (1 of 5)9/4/2011 10:04:39 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=pflog&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pflogd&sektion=8&manpath=OpenBSD+4.9

PF: Logging

Causes all matching packets to be logged to the specified pflog(4) interface. For example, when
using spamlogd(8) all SMTP traffic can be logged to a dedicated pflog(4) interface by PF. The
spamlogd(8) daemon can then be told to listen on that interface. This keeps the main PF logfile
clean of SMTP traffic which otherwise would not need to be logged. Use ifconfig(8) to create
pflog(4) interfaces. The default log interface pf | 0gO0 is created automatically.

user
Causes the UNIX user-id and group-id that owns the socket that the packet is sourced from/
destined to (whichever socket islocal) to be logged along with the standard log information.

Options are given in parenthesis after the | og keyword; multiple options can be separated by a comma
or space.

pass in log (all, to pflogl) on $ext if inet proto tcp to
$ext if port 22 keep state

Reading a Log File

The log file written by pflogd isin binary format and cannot be read using atext editor. Tcpdump must
be used to view the log.

To view thelog file:
tcpdunp -n -e -ttt -r /var/log/pflog

Note that using tcpdump(8) to watch the pflog file does not give areal-time display. A real-time display
of logged packetsis achieved by using the pf | og0 interface:

tcpdunmp -n -e -ttt -i pflog0

NOTE: When examining the logs, special care should be taken with tcpdump's verbose protocol
decoding (activated viathe - v.command line option). Tcpdump's protocol decoders do not have a
perfect security history. At least in theory, a delayed attack could be possible viathe partial packet
payloads recorded by the logging device. It is recommended practice to move the log files off of the
firewall machine before examining them in thisway.

Additional care should also be taken to secure access to the logs. By default, pflogd will record 160
bytes of the packet in the log file. Access to the logs could provide partial access to sensitive packet
payloads (like telnet(1) or ftp(1) usernames and passwords).

Filtering Log Output

http://www.openbsd.org/fag/pf/logging.html (2 of 5)9/4/2011 10:04:39 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=spamlogd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=telnet&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1

PF: Logging

Because pflogd logs in tcpdump binary format, the full range of tcpdump features can be used when
reviewing the logs. For example, to only see packets that match a certain port:

tcpdunmp -n -e -ttt -r /var/log/pflog port 80
This can be further refined by limiting the display of packets to a certain host and port combination:

tcpdunmp -n -e -ttt -r /var/log/pflog port 80 and host
192.168.1. 3

The same idea can be applied when reading from the pf | 0gO0 interface:
tcpdunmp -n -e -ttt -i pflog0 host 192.168.4.2

Note that this has no impact on which packets are logged to the pflogd log file; the above commands
only display packets as they are being logged.

In addition to using the standard tcpdump(8) filter rules, the tcpdump filter language has been extended
for reading pflogd output:

I p - address family is |Pv4.

. 1 p6 - addressfamily is|Pv6.

. on int - packet passed through the interface int.

. ifnane int -sameason int.

. rul eset nane - theruleset/anchor that the packet was matched in.

. rul enum num- thefilter rule that the packet matched was rule number num.

. action act -theaction taken on the packet. Possible actions are pass and bl ock.

. reason res -thereasonthat act i on was taken. Possible reasons are mat ch, bad-
of f set,fragnment,short,normal i ze, nenory, bad-ti nmest anp, congesti on,
| p-option,proto-cksumstate-m smatch,state-insert,state-limt,src-
limt,andsynproxy.

. 1 nbound - packet was inbound.

. out bound - packet was outbound.

Example:

tcpdunmp -n -e -ttt -i pflogO0 i nbound and action bl ock and
on w0

This display thelog, in real-time, of inbound packets that were blocked on the wiO interface.

http://www.openbsd.org/fag/pf/logging.html (3 of 5)9/4/2011 10:04:39 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8

PF: Logging

Packet Logging Through Syslog

In many situationsit is desirable to have the firewall logs available in ASCII format and/or to send them
to aremote logging server. All this can be accomplished with a small shell script, some minor changes
of the OpenBSD configuration files, and syslogd(8), the logging daemon. Syslogd logsin ASCII and is

also able to log to aremote logging server.
Create the following script:
/ etc/ pflogrotate
#!'/bi n/sh
PFLOG=/ var/ | og/ pfl og
FI LE=/ var /1 og/ pfl ogbm n. $(dat e " +%r%d%1oM)
pkill -ALRM -u root -Uroot -t - -x pflogd
if [-r SPFLOG] && [$(stat -f % SPFLOG -gt 24]; then
mv $PFLOG $FI LE
pkill -HUP -u root -Uroot -t - -x pflogd
tcpdunp -n -e -s 160 -ttt -r $FILE | | ogger -t pf -p
| ocal 0.info
rm $FI LE
fi
Edit root's cron job:
crontab -u root -e

Add the following two lines:

rotate pf log file every 5 m nutes
0-59/5 * * * * [bin/sh /etc/pflogrotate

Add thefollowing lineto/ et ¢/ sysl og. conf :
| ocal 0.info [var/ | og/ pfl og.txt
If you also want to log to aremote log server, add the line:
| ocal 0.info @ysl ogger

Make sure host syslogger has been defined in the hosts(5) file.

http://www.openbsd.org/fag/pf/logging.html (4 of 5)9/4/2011 10:04:39 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=syslogd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=hosts&sektion=5

PF: Logging

Createthefile/ var/ | og/ pfl og. t xt toalow syslog to log to that file, and give it the same
permissions as the pflog file.

touch /var/l og/ pfl og. txt
chnod 600 /var/| og/ pfl og. txt

Make syslogd notice the changes by restarting it:
kill -HUP $(cat /var/run/syslog. pid)

All logged packetsare now sentto/ var /| og/ pfl og. t xt . If the second line is added they are sent
to the remote logging host syslogger as well.

Thescript / et ¢/ pf | ogr ot at e now processes and then deletes/ var / | og/ pf | og so rotation of
pf | og by newsyslog(8) is no longer necessary and should be disabled. However, / var / | og/ pf | og.
t xt replaces/ var /| og/ pf | og and rotation of it should be activated. Change/ et ¢/ newsysl og.
conf asfollows:

#/ var /| og/ pfl og 600 3 250 * ZB "pkill -HUP -u
root -Uroot -t - -x pflogd"
/var /| og/ pfl og. t xt 600 7 * 24

PF will now login ASCIl to/ var /| og/ pfl og. t xt . If soconfiguredin/ et c/ sysl og. conf , it
will also log to aremote server. The logging is not immediate but it can take up to about 5-6 minutes
(the cron job interval) before the logged packets appear in thefile.

[Previous. Packet Tagging] [Contents] [Next: Performance]

a WwWw @openbsd.org
$OpenBSD: logging.html,v 1.44 2011/07/14 00:58:02 nick Exp $

http://www.openbsd.org/fag/pf/logging.html (5 of 5)9/4/2011 10:04:39 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=newsyslog&sektion=8
mailto:www@openbsd.org

PF: Performance

OpenBSD

[Previous. Logging] [Contents] [Next: Issues with FTP]

PF: Performance

"How much bandwidth can PF handle?"
"How much computer do | need to handle my Internet connection?"

There are no easy answers to those questions. For some applications, a 486/66 with a pair of good ISA
NICs could filter and NAT close to SMbps, but for other applications a much faster machine with much
more efficient PCI NICs might end up being insufficient. The real question is not the number of bits per
second but rather the number of packets per second and the complexity of the ruleset.

PF performance is determined by several variables:

. Number of packets per second. Almost the same amount of processing needs to be done on a
packet with 1500 byte payload as for a packet with a one byte payload. The number of packets
per second determines the number of times the state table and, in case of no match there, filter
rules have to be evaluated every second, determining the effective demand on the system.

. Performance of your system bus. The I SA bus has a maximum bandwidth of 8MB/sec, and when
the processor is accessing it, it has to slow itself to the effective speed of a 80286 running at
8MHz, no matter how fast the processor really is. The PCI bus has a much greater effective
bandwidth, and has less impact on the processor.

. Efficiency of your network card. Some network adapters are just more efficient than others.
Older rl(4) Realtek 8139 based cards tend to be relatively poor performers (newer re(4)-based
Realtek cards are much better), while Intel 21143 (dc(4)) based cards tend to perform very well.
For maximum performance, consider using gigabit Ethernet cards, even if not connecting to
gigabit networks, as they have much more advanced buffering.

. Complexity and design of your ruleset. The more complex your ruleset, the slower it is. The more
packets that are filtered by keep st at e and qui ck rules, the better the performance. The
more lines that have to be evaluated for each packet, the lower the performance.

. Barely worth mentioning: CPU and RAM. As PF is a kernel-based process, it will not use swap
space. So, if you have enough RAM, it runs, if not, it panics due to pool(9) exhaustion. Huge
amounts of RAM are not needed -- 32MB should be plenty for close to 30,000 states, which isa
lot of states for asmall office or home application. Most users will find a"recycled" computer
more than enough for a PF system -- a 300MHz system will move alarge number of packets
rapidly, at least if backed up with good NICs and a good ruleset.

http://www.openbsd.org/fag/pf/perf.html (1 of 2)9/4/2011 10:04:43 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=rl&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=re&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=dc&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pool&sektion=9

PF: Performance

Will multiple processors help?

PF will only use one processor, so multiple processors (or multiple cores) WILL NOT improve PF
performance. HOWEV ER, under some circumstances, running the SMP version of OpenBSD (bsd.
np) instead of bsd will give better performance due to differencesin how interrupt handling isdone. In
many cases, bsd. np will give less performance. |F you are seeing performance problems, experiment
with this, most users will never hit any limits to worry about it.

Are there any benchmarks?

People often ask for PF benchmarks. The only benchmark that countsis your system performancein
your environment. A benchmark that doesn't replicate your environment will not properly help you plan
your firewall system. The best course of action isto benchmark PF for yourself under the same, or as
close as possible to, network conditions that the actual firewall would experience running on the same
hardware the firewall would use.

PF is used in some very large, high-traffic applications, and the developers are "power users' of PF.
Odds are, it will do very well for you.

[Previous. Logging] [Contents] [Next: Issues with FTP]

& www @openbsd.org
$OpenBSD: perf.html,v 1.24 2010/05/19 13:25:16 sthen Exp $

http://www.openbsd.org/fag/pf/perf.html (2 of 2)9/4/2011 10:04:43 AM

mailto:www@openbsd.org

PF: Issues with FTP

OpenBSD

[Previous. Performance] [Contents] [Next: Authpf: User Shell for Authenticating Gateways)

PF: Issues with FTP

Table of Contents

. FTPModes

. FTPClient Behind the Firewall

. PF"Sdf-Protecting”" an FTP Server

. FTP Server Protected by an External PF Firewall Running NAT
. More Information on FTP

. Proxying TFTP

FTP Modes

FTPisaprotocol that dates back to when the Internet was a small, friendly collection of computers and
everyone knew everyone else. At that time the need for filtering or tight security wasn't necessary. FTP
wasn't designed for filtering, for passing through firewalls, or for working with NAT.

Y ou can use FTP in one of two ways: passive or active. Generally, the choice of active or passiveis
made to determine who has the problem with firewalling. Redlistically, you will have to support both to
have happy users.

With active FTP, when a user connectsto aremote FTP server and requests information or afile, the
FTP server makes a new connection back to the client to transfer the requested data. Thisis called the
data connection. To start, the FTP client chooses a random port to receive the data connection on. The
client sends the port number it chose to the FTP server and then listens for an incoming connection on
that port. The FTP server then initiates a connection to the client's address at the chosen port and
transfers the data. Thisis aproblem for users attempting to gain accessto FTP servers from behind a
NAT gateway. Because of how NAT works, the FTP server initiates the data connection by connecting
to the external address of the NAT gateway on the chosen port. The NAT machine will receive this, but
because it has no mapping for the packet in its state table, it will drop the packet and won't deliver it to
the client.

http://www.openbsd.org/fag/pf/ftp.html (1 of 5)9/4/2011 10:04:44 AM

http://www.openbsd.org/index.html

PF: Issues with FTP

With passive mode FTP (the default mode with OpenBSD's ftp(1) client), the client requests that the

server pick arandom port to listen on for the data connection. The server informs the client of the port it
has chosen, and the client connectsto this port to transfer the data. Unfortunately, thisis not always
possible or desirable because of the possibility of afirewall in front of the FTP server blocking the
incoming data connection. OpenBSD's ftp(1) uses passive mode by default; to force active mode FTP,
use the -A flag to ftp, or set passive mode to "off" by issuing the command "passi ve of f" at the

"f t p>" prompt.

FTP Client Behind the Firewall

Asindicated earlier, FTP does not go through NAT and firewalls very well.

Packet Filter provides a solution for this situation by redirecting FTP traffic through an FTP proxy
server. This process actsto "guide" your FTP traffic through the NAT gateway/firewall, by actively
adding needed rules to PF system and removing them when done, by means of the PF anchors system.

The FTP proxy used by PF is ftp-proxy(8).

To activate it, put something like this early in the rules section of pf . conf :

pass in quick on $int if proto tcp to port 21 rdr-to
127.0.0.1 port 8021

Thisredirects FTP from your clientsto the ftp-proxy(8) program, which is listening on your machine to
port 8021.

Y ou also need an anchor in the rules section:
anchor "ftp-proxy/*"

Hopefully it is apparent the proxy server has to be started and running on the OpenBSD box. Thisis
done by inserting the following linein/ et c/ rc. conf . | ocal :

ftpproxy_ flags=""
The ftp-proxy program can be started as root to activate it without a reboot.
ftp-proxy listens on port 8021, the same port the abover dr - t o statement is sending FTP traffic to.

To support active mode connections from certain (fussy) clients, you may need the '-r' switch on ftp-
proxy(8).

http://www.openbsd.org/fag/pf/ftp.html (2 of 5)9/4/2011 10:04:44 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=ftp&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+4.9

PF: Issues with FTP

PF "Self-Protecting" an FTP Server

In this case, PF is running on the FTP server itself rather than a dedicated firewall computer. When
servicing a passive FTP connection, FTP will use arandomly chosen, high TCP port for incoming data.
By default, OpenBSD's native FTP server ftpd(8) uses the range 49152 to 65535. Obviously, these must

be passed through the filter rules, along with port 21 (the FTP control port):

pass in on $ext if proto tcp to port 21
pass in on $ext if proto tcp to port > 49151

Note that if you desire, you can tighten up that range of ports considerably. In the case of the OpenBSD

ftpd(8) program, that is done using the sysctl(8) variablesnet . i net. i p. porthi first andnet.
I net.ip.porthilast.

FTP Server Protected by an External PF Firewall Running NAT

In this case, the firewall must redirect traffic to the FTP server in addition to not blocking the required
ports. In order to accomplish this, we turn again to ftp-proxy(8).

ftp-proxy(8) can be run in amode that causesit to forward all FTP connectionsto a specific FTP server.
Basically we'll setup the proxy to listen on port 21 of the firewall and forward all connectionsto the
back-end server.

Edit/ etc/rc. conf. | ocal andadd thefollowing:

ftpproxy_flags="-R 10.10.10.1 -p 21 -b 192. 168.0. 1"

Here 10.10.10.1 isthe | P address of the actual FTP server, 21 isthe port we want ftp-proxy(8) to listen
on, and 192.168.0.1 is the address on the firewall that we want the proxy to bind to.

Now for the pf.conf rules:

"192.168.0. 1"
*10.10.10. 1"

ext_ip
ftp_ip

mat ch out on $ext if inet from$int if nat-to ($ext _if)

anchor "ftp-proxy/*"
pass in on $ext if inet proto tcp to $ext _ip port 21
pass out on $int if inet proto tcp to $ftp_ip port 21 user

http://www.openbsd.org/fag/pf/ftp.html (3 of 5)9/4/2011 10:04:44 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ftpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8

PF: Issues with FTP

pr oxy

Here we allow the connection inbound to port 21 on the external interface as well as the corresponding
outbound connection to the FTP server. The "user proxy" addition to the outbound rule ensures that only
connections initiated by ftp-proxy(8) are permitted.

Note that if you want to run ftp-proxy(8) to protect an FTP server aswell asalow clientsto FTP out
from behind the firewall that two instances of ftp-proxy will be required.

More Information on FTP
More information on filtering FTP and how FTP works in general can be found in this whitepaper:

. FTP Reviewed

Proxying TFTP

Trivial File Transfer Protocol (TFTP) suffers from some of the same limitations as FTP does when it
comes to passing through a firewall. Luckily, PF has a helper proxy for TFTP called tftp-proxy(8).

tftp-proxy(8) is setup in much the same way as ftp-proxy(8) wasin the FTP Client Behind the Firewall
section above.

match out on $ext if from$int if nat-to ($ext _if)
anchor "tftp-proxy/*"
pass in quick on $int if proto udp from$int if to port
tftp \

rdr-to 127.0.0.1 port 6969

anchor "tftp-proxy/*"

The rules above allow TFTP outbound from the internal network to TFTP servers on the external
network.

The last step is to enable tftp-proxy in inetd.conf(5) so that it listens on the same port that ther dr -t o
rule specified above, in this case 6969.

127.0.0. 1: 6969 dgram udp wait root /usr/libexec/tftp-proxy
tftp-proxy

http://www.openbsd.org/fag/pf/ftp.html (4 of 5)9/4/2011 10:04:44 AM

http://www.pintday.org/whitepapers/ftp-review.shtml
http://www.openbsd.org/cgi-bin/man.cgi?query=tftp-proxy&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=inetd.conf&sektion=5

PF: Issues with FTP

Unlike ftp-proxy(8), tftp-proxy(8) is spawned from inetd.

[Previous: Performance] [Contents] [Next: Authpf: User Shell for Authenticating Gateways|

ﬁ www @openbsd.org
$OpenBSD: ftp.html,v 1.33 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/ftp.html (5 of 5)9/4/2011 10:04:44 AM

mailto:www@openbsd.org

PF: Authpf: User Shell for Authenticating Gateways

OpenBSD

[Previous: Issues with FTP] [Contents] [Next: Firewall Redundancy with CARP and pfsync]

PF: Authpf: User Shell for Authenticating Gateways

Table of Contents

. Introduction
. Configuration
o Enabling Authpf
o Linking Authpf into the Main Ruleset
o Configuring Loaded Rules
o Access Control Lists
o Displaying aLogin Message
o Assigning Authpf as aUser's Shell
. Creating an authpf Login Class
. Seeing WhoisLogged In

. Example

Introduction

Authpf(8) is auser shell for authenticating gateways. An authenticating gateway isjust like aregular network
gateway (a.k.a. arouter) except that users must first authenticate themselves to the gateway before it will alow
traffic to passthrough it. When auser'sshell isset to/ usr/ sbi n/ aut hpf (i.e., instead of setting a user's shell
to ksh(1), csh(1), etc) and the user logs in using SSH, authpf will make the necessary changes to the active pf(4)

ruleset so that the user's traffic is passed through the filter and/or translated using Network Address Tranglation or
redirection. Once the user logs out or their session is disconnected, authpf will remove any rules loaded for the
user and kill any stateful connections the user has open. Because of this, the ability of the user to pass traffic
through the gateway only exists while the user keeps their SSH session open.

Authpf loads a user's rules into a unigque anchor point. The anchor is named by combining the user's UNIX

username and the authpf process-id into the format "user nanme(Pl D) ". Each users anchor is stored within the

aut hpf anchor whichisin turn anchored to the main ruleset. The "fully qualified anchor path" then becomes:
mai n_r ul eset/ aut hpf/ user nane(Pl D)

The rules that authpf loads can be configured on a per-user or global basis.

http://www.openbsd.org/fag/pf/authpf.html (1 of 6)9/4/2011 10:04:48 AM

http://www.openbsd.org/index.html
http://www.openbsd.org/cgi-bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=ksh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=csh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.9

PF: Authpf: User Shell for Authenticating Gateways

Example uses of authpf include:

. Requiring users to authenticate before allowing Internet access.

. Granting certain users -- such as administrators -- access to restricted parts of the network.

. Allowing only known users to access the rest of the network or Internet from awireless network segment.

. Allowing workers from home, on the road, etc., access to resources on the company network. Users outside
the office can not only open access to the company network, but can also be redirected to particular
resources (e.g., their own desktop) based on the username they authenticate with.

. Inasetting such asalibrary or other place with public Internet terminals, PF may be configured to allow
limited Internet access to guest users. Authpf can then be used to provide registered users with complete
access.

Authpf logs the username and | P address of each user who authenticates successfully as well as the start and end

times of their login session via syslogd(8). By using this information, an administrator can determine who was
logged in when and also make users accountable for their network traffic.

Configuration

The basic steps needed to configure authpf are outlined here. For a complete description of authpf configuration,
please refer to the authpf man page.

Enabling Authpf

Authpf will not run if the config file/ et ¢/ aut hpf / aut hpf . conf isnot present. The file may be empty (zero
size), but unlessit is present authpf will exit immediately after a user authenticates successfully.

The following configuration directives can be placed in aut hpf . conf:

. anchor =nane - Use the specified anchor name instead of "authpf".
. tabl e=nane - Usethe specified table name instead of "authpf_users".

Linking Authpf into the Main Ruleset
Authpf islinked into the main ruleset by using an anchor rule:
anchor "aut hpf/*"

Wherever theanchor ruleis placed within the ruleset is where PF will branch off from the main ruleset to
evaluate the authpf rules.

Configuring Loaded Rules

Authpf loads its rules from one of two files:

http://www.openbsd.org/fag/pf/authpf.html (2 of 6)9/4/2011 10:04:48 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=syslogd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=authpf&sektion=8&manpath=OpenBSD+4.9

PF: Authpf: User Shell for Authenticating Gateways

. /etc/aut hpf/users/$USER/ aut hpf.rul es
. /etc/aut hpf/authpf.rules

Thefirst file contains rules that are only loaded when the user $USER (which is replaced with the user's username)
logs in. The per-user rule configuration is used when a specific user -- such as an administrator -- requires a set of
rules that is different than the default set. The second file contains the default rules which are loaded for any user
that doesn't have their own aut hpf . r ul es file. If the user-specific file exists, it will override the default file. At
least one of the files must exist or authpf will not run.

Rules have the same syntax as in any other PF ruleset with one exception: Authpf alows for the use of two
predefined macros:

. $user i p - thelP address of the logged in user
. $user i d - the username of the logged in user

It's recommended practice to use the $user _i p macro to only permit traffic through the gateway from the
authenticated user's computer.

In addition to the $user _i p macro, authpf will make use of the aut hpf _user s table (if it exists) for storing
the |P addresses of all authenticated users. Be sure to define the table before using it:

t abl e <aut hpf _user s> persi st
pass in on $ext_if proto tcp from <aut hpf _users> \
to port sntp

This table should only be used in rules that are meant to apply to all authenticated users.
Access Control Lists

Users can be prevented from using authpf by creating afileinthe/ et ¢/ aut hpf / banned/ directory and
naming it after the username that is to be denied access. The contents of the file will be displayed to the user before
authpf disconnects them. This provides a handy way to notify the user of why they're disallowed access and who to
contact to have their access restored.

Conversaly, it's also possible to allow only specific users access by placing usernamesinthe/ et ¢/ aut hpf/
aut hpf. al | owfile. If the/ et ¢/ aut hpf/ aut hpf . al | owfile doesnot exist or "*" is entered into the file,
then authpf will permit access to any user who successfully logsin via SSH as long as they are not explicitly
banned.

If authpf is unable to determine if ausernameis allowed or denied, it will print a brief message and then
disconnect the user. Anentry in/ et ¢/ aut hpf / banned/ awaysoverridesanentry in/ et ¢/ aut hpf/
aut hpf. al | ow.

Displaying a Login Message

http://www.openbsd.org/fag/pf/authpf.html (3 of 6)9/4/2011 10:04:48 AM

PF: Authpf: User Shell for Authenticating Gateways

Whenever a user successfully authenticates to authpf, a greeting is printed that indicates that the user is
authenticated.

Hell o charlie. You are authenticated from host "64.59.56. 140"

This message can be supplemented by putting a custom message in/ et ¢/ aut hpf / aut hpf . message. The
contents of thisfile will be displayed after the default welcome message.

Assigning Authpf as a User's Shell

In order for authpf to work it must be assigned as the user's login shell. When the user successfully authenticates to
sshd(8), authpf will be executed as the user's shell. It will then check if the user is allowed to use authpf, load the
rules from the appropriate file, etc.

There are a couple ways of assigning authpf as a user's shell:

1. Manually for each user using chsh(1), vipw(8), useradd(8), usermod(8), etc.
2. By assigning usersto alogin class and changing the classsshel | optionin/etc/ | ogi n. conf .

Creating an authpf Login Class

When using authpf on a system that has regular user accounts and authpf user accounts, it can be beneficia to use
aseparate login class for the authpf users. This allows for certain changes to those accounts to be made on a global
basis and also allows different policies to be placed on regular accounts and authpf accounts. Some exampl es of
what policies can be set:

. shell - Specify auser'slogin shell. This can be used to force auser's shell to aut hpf regardless of the
entry in the passwd(5) database.

. welcome - Specify which motd(5) fileto display when auser logs in. Thisis useful for displaying messages
that are relevant only to authpf users.

Login classes are created in the login.conf(5) file. OpenBSD comes with an authpf login class defined as:
aut hpf : \
- wel cone=/ et ¢/ not d. aut hpf : \

: shel | =/ usr/ sbi n/ aut hpf:\
:tc=default:

Users are assigned to alogin class by editing the cl ass field of the user's passwd(5) database entry. One way to
do thisiswith the chsh(1) command.

Seeing Who is Logged In

Once a user has successfully logged in and authpf has adjusted the PF rules, authpf changes its processtitle to

http://www.openbsd.org/fag/pf/authpf.html (4 of 6)9/4/2011 10:04:48 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=sshd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=chsh&sektion=1
http://www.openbsd.org/cgi-bin/man.cgi?query=vipw&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=useradd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=usermod&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=passwd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=motd&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=login.conf&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=chsh&sektion=1

PF: Authpf: User Shell for Authenticating Gateways

indicate the username and | P address of the logged in user:

ps -ax | grep aut hpf
23664 p0O |Is+ 0: 00. 11 -authpf: charlie@92.168.1.3 (authpf)

Heretheuser char | i e islogged in from the machine 192.168.1.3. By sending a SIGTERM signal to the authpf
process, the user can be forcefully logged out. Authpf will also remove any rules loaded for the user and kill any
stateful connections the user has open.

kill -TERM 23664
Example

Authpf is being used on an OpenBSD gateway to authenticate users on a wireless network which is part of alarger
campus network. Once a user has authenticated, assuming they're not on the banned list, they will be permitted to
SSH out and to browse the web (including secure web sites) in addition to accessing either of the campus DNS
servers.

The/ et c/ aut hpf / aut hpf . r ul es file contains the following rules:

wifi if ="wO0"
pass in quick on $wifi if proto tcp from $user ip to port { ssh, http, \
https }

The administrative user char | i e needsto be able to access the campus SMTP and POP3 serversin addition to

surfing the web and using SSH. The following rulesare setup in/ et ¢/ aut hpf / user s/ charl i e/ aut hpf.
rul es:

wfi_if ="wO0"
sntp_server = "10.0.1.50
pop3_server = "10.0.1.51

pass in quick on $wifi if \

proto tcp from $user _ip to $sm p_server port sntp
pass in quick on $wifi if \

proto tcp from $user _ip to $pop3_server port pop3
pass in quick on $wifi if \

proto tcp from $user ip to port { ssh, http, https }

Themain ruleset -- located in/ et ¢/ pf . conf -- issetup asfollows:

http://www.openbsd.org/fag/pf/authpf.html (5 of 6)9/4/2011 10:04:48 AM

PF: Authpf: User Shell for Authenticating Gateways

macr os
wfi if ="wO0"
ext if = "fxp0"

dns_servers = "{ 10.0.1.56, 10.0.2.56 }"
t abl e <aut hpf _user s> persi st

filter
bl ock drop all

pass out quick on $ext if inet proto { tcp, udp, icnmp } \
from{ $wifi_if:network, $ext if }

pass in quick on $wifi _if inet proto tcp \
from$wifi_if:network to $wifi _if port ssh

pass in quick on $wifi _if inet proto { tcp, udp } \
from <aut hpf _users> to $dns_servers port domain

anchor "authpf/*" in on $wifi if

The ruleset is very ssmple and does the following:

. Block everything (default deny).

. Pass outgoing TCP, UDP, and ICMP traffic on the externa interface from the wireless network and from
the gateway itself.

. Passincoming SSH traffic from the wireless network destined for the gateway itself. Thisruleis necessary
to permit usersto log in.

. Passincoming DNS requests from all authenticated authpf users to the campus DNS servers.

. Create the anchor point "authpf" for incoming traffic on the wireless interface.

The idea behind the main ruleset is to block everything and allow the least amount of traffic through as possible.
Trafficisfreeto flow out on the external interface but is blocked from entering the wireless interface by the default
deny policy. Once a user authenticates, their traffic is permitted to passin on the wireless interface and to then
flow through the gateway into the rest of the network. The qui ck keyword is used throughout so that PF doesn't
have to evaluate each named ruleset when a new connection passes through the gateway.

[Previous: Issues with FTP] [Contents] [Next: Firewall Redundancy with CARP and pfsync]

ﬁ www@openbsd.org
$0penBSD: authpf.html,v 1.29 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/authpf.html (6 of 6)9/4/2011 10:04:48 AM

mailto:www@openbsd.org

PF: Firewall Redundancy with CARP and pfsync

OpenBSD

[Previous: Authpf: User Shell for Authenticating Gateways] [Contents] [Next: Firewall for Home or Small Office]

PF: Firewall Redundancy with CARP and pfsync

Table of Contents

. Introduction to CARP

. CARP Operation

. Configuring CARP

. CARP Example

. Introduction to pfsync

. pfsync Operation

. Configuring pfsync

. pfsync Example

. Combining CARP and pfsync for Failover and Redundancy

. Operational Issues
o Configuring CARP and pfsync During Boot
o Forcing Failover of the Master

o Ruleset Tips
. Other References

Introduction to CARP

CARP isthe Common Address Redundancy Protocol. Its primary purpose is to alow multiple hosts on the same
network segment to share an IP address. CARP is a secure, free aternative to the Virtual Router Redundancy

Protocol (VRRP) and the Hot Standby Router Protocol (HSRP).

CARP works by allowing a group of hosts on the same network segment to share an IP address. This group of
hostsis referred to as a "redundancy group”. The redundancy group is assigned an I P address that is shared
amongst the group members. Within the group, one host is designated the "master" and the rest as "backups'. The
master host is the one that currently "holds' the shared IP; it responds to any traffic or ARP requests directed
towards it. Each host may belong to more than one redundancy group at atime.

One common use for CARP is to create a group of redundant firewalls. The virtual |P that is assigned to the
redundancy group is configured on client machines as the default gateway. In the event that the master firewall
suffersafailure or is taken offline, the IP will move to one of the backup firewalls and service will continue

http://www.openbsd.org/fag/pf/carp.html (1 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/index.html
http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/rfc/rfc2281.txt

PF: Firewall Redundancy with CARP and pfsync

unaffected.

CARRP supports |Pv4 and | Pv6.

CARP Operation

The master host in the group sends regular advertisements to the local network so that the backup hosts know it's
still alive. If the backup hosts don't hear an advertisement from the master for a set period of time, then one of
them will take over the duties of master (whichever backup host has the lowest configured advbase and
advskewvalues).

It's possible for multiple CARP groups to exist on the same network segment. CARP advertisements contain the
Virtual Host 1D which allows group members to identify which redundancy group the advertisement belongs to.

In order to prevent amalicious user on the network segment from spoofing CARP advertisements, each group can
be configured with a password. Each CARP packet sent to the group is then protected by an SHA1 HMAC.

Since CARPisitsown protocol it should have an explicit passrule in filter rulesets:
pass out on $carp_dev proto carp keep state

$car p_dev should be the physical interface that CARP is communicating over.

Configuring CARP

Each redundancy group is represented by a carp(4) virtua network interface. As such, CARP is configured using
ifconfig(8).

i fconfig carpN create

I fconfig carpN vhid vhid [pass password] [carpdev carpdev] \

[advbase advbase] [advskew advskew] [state state] [group|-group
group] \

| paddr ess net mask nmask

car pN
The name of the carp(4) virtual interface where N is an integer that represents the interface's number (e.g.
carpl0).

vhid
The Virtual Host ID. Thisis auniqgue number that is used to identify the redundancy group to other nodes
on the network. Acceptable values are from 1 to 255.

password
The authentication password to use when talking to other CARP-enabled hosts in this redundancy group.
This must be the same on all members of the group.

car pdev

http://www.openbsd.org/fag/pf/carp.html (2 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8

PF: Firewall Redundancy with CARP and pfsync

This optional parameter specifies the physical network interface that belongs to this redundancy group. By
default, CARP will try to determine which interface to use by looking for a physical interface that isin the
same subnet as the ipaddress and mask combination given to the carp(4) interface.

advbase
This optional parameter specifies how often, in seconds, to advertise that we're amember of the redundancy
group. The default is 1 second. Acceptable values are from 1 to 255.

advskew
This optional parameter specifies how much to skew the advbase when sending CARP advertisements.
By manipulating advskew, the master CARP host can be chosen. The higher the number, the less
preferred the host will be when choosing a master. The default is 0. Acceptable values are from 0 to 254.

state
Force acarp(4) interface into a certain state. Valid statesarei ni t , backup, and mast er .

group, -group
Add or remove a carp(4) interface to a certain interface group. By default all carp(4) interfaces are added to
the car p group. Each group hasacar pdenot e counter affecting all carp(4) interfaces belonging to that
group. As described below, it can be useful to group certain interfaces together for failover purposes.

| paddr ess
Thisisthe shared | P address assigned to the redundancy group. This address does not have to bein the
same subnet as the | P address on the physical interface (if present). This address needs to be the same on all
hosts in the group, however.

mask
The subnet mask of the shared IP.

Further CARP behavior can be controlled via sysctl(8).

net.inet.carp.allow
Accept incoming CARP packets or not. Default is 1 (yes).
net.inet.carp. preenpt
Allow hosts within a redundancy group that have a better advbase and advskewto preempt the master.
In addition, this option also enables failing over a group of interfaces together in the event that one interface
goes down. If one physical CARP-enabled interface goes down, CARP will increase the demotion counter,
car pdenot e, by 1 on interface groups that the carp(4) interface is a member of, in effect causing all
group membersto fail-over together. net . i net . car p. pr eenpt is0 (disabled) by default.
net.inet.carp.log
L og state changes, bad packets and other errors. May be between 0 and 7, corresponding with syslog(3)
priorities. The default is 2 (state changes only).

CARP Example

Hereis an example CARP configuration:

sysctl -w net.inet.carp.allow=1

ifconfig carpl create

ifconfig carpl vhid 1 pass nekm tasdi goat carpdev enD \
advskew 100 10.0.0.1 netmask 255.255.255.0

http://www.openbsd.org/fag/pf/carp.html (3 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=8

PF: Firewall Redundancy with CARP and pfsync

This sets up the following:

. Enablesreceipt of CARP packets (this is the default setting).

. Createsacarp(4) interface, car p1.

. Configurescar p1l for virtual host #1, enables a password, sets en as the interface belonging to the group,
and makes this host a backup due to the advskewof 100 (assuming of course that the master is set up
with an advskewlessthan 100). The shared IP assigned to this group is 10.0.0.1/255.255.255.0.

Runningi f confi g oncar pl showsthe status of the interface.

ifconfig carpl

carpl: flags=8802<UP, BROADCAST, SI MPLEX, MULTI CAST> ntu 1500
carp: BACKUP carpdev enD vhid 1 advbase 1 advskew 100
groups: carp
inet 10.0.0.1 netmask Oxffffff0O0 broadcast 10.0.0. 255

Introduction to pfsync
The pfsync(4) network interface exposes certain changes made to the pf(4) state table. By monitoring this device

using tcpdump(8), state table changes can be observed in real time. In addition, the pfsync(4) interface can send

these state change messages out on the network so that other nodes running PF can merge the changes into their
own state tables. Likewise, pfsync(4) can also listen on the network for incoming messages.

pfsync Operation

By default, pfsync(4) does not send or receive state table updates on the network; however, updates can still be
monitored using tcpdump(8) or other such tools on the local machine.

When pfsync(4) is set up to send and receive updates on the network, the default behavior isto multicast updates
out on the local network. All updates are sent without authentication. Best common practiceis either:

1. Connect the two nodes that will be exchanging updates back-to-back using a crossover cable and use that
interface asthe syncdev (see below).
2. Usetheifconfig(8) syncpeer option (see below) so that updates are unicast directly to the peer, then
configure ipsec(4) between the hosts to secure the pfsync(4) traffic.
When updates are being sent and received on the network, pfsync packets should be passed in the filter ruleset:

pass on $sync_if proto pfsync

$sync_i f should be the physical interface that pfsync(4) is communicating over.

Configuring pfsync

http://www.openbsd.org/fag/pf/carp.html (4 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=tcpdump&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ipsec&sektion=4

PF: Firewall Redundancy with CARP and pfsync

Since pfsync(4) isavirtual network interface, it is configured using ifconfig(8).

I fconfig pfsyncN syncdev syncdev [syncpeer syncpeer] [defer]|-
defer]

pfsyncN
The name of the pfsync(4) interface. pf syncO exists by default when using the GENERI C kernel.

syncdev
The name of the physical interface used to send pfsync updates out.

syncpeer
This optional parameter specifies the IP address of a host to exchange pfsync updates with. By default
pfsync updates are multicast on the local network. This option overrides that behavior and instead unicasts
the update to the specified syncpeer .

def er
If thedef er flagisused, theinitial packet of a new connection passing through the firewall will not be
transmitted until either another pfsync(4) system has acknowledged the state table addition, or atimeout has
expired. This adds small delays but allows traffic to flow when more than one firewall might actively
handle packets ("active/active"), e.g. with certain ospfd(8), bgpd(8) or carp(4) configurations.

pfsync Example
Hereis an example pfsync configuration:
ifconfig pfsyncO syncdev endl

This enables pfsync on the eml interface. Outgoing updates will be multicast on the network allowing any other
host running pfsync to receive them.

Combining CARP and pfsync For Failover

By combining the features of CARP and pfsync, a group of two or more firewalls can be used to create a highly-
available, fully redundant firewall cluster.

CARP:
Handles the automatic failover of one firewall to another.

pfsync:
Synchronizes the state table amongst al the firewalls. In the event of afailover, traffic can flow
uninterrupted through the new master firewall.

An example scenario. Two firewalls, f wl and f w2.

+----| WAN/Internet |----+

http://www.openbsd.org/fag/pf/carp.html (5 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8

PF: Firewall Redundancy with CARP and pfsync

The firewalls are connected back-to-back using a crossover cable on emnil. Both are connected to the LAN on en®
and to aWAN/Internet connection on en®. |P addresses are as follows:

. fwlemoO: 172.16.0.1

. fwlemil: 10.10.10.1

. fwlem2:192.0.2.1

. fw2em0: 172.16.0.2

. fw2eml: 10.10.10.2

. fw2em2:192.0.2.2

« LAN shared IP: 172.16.0.100

. WAN/Internet shared IP: 192.0.2.100

The network policy isthat f wl will be the preferred master.

Configure fwl.:

I enabl e preenption and group interface fail over
sysctl -w net.inet.carp.preenpt=1

configure pfsync

i fconfig enl 10.10.10.1 netmask 255. 255. 255.0
i fconfig pfsyncO syncdev enl

i fconfig pfsyncO up

H H H -

I configure CARP on the LAN side

i fconfig carpl create

i fconfig carpl vhid 1 carpdev enD pass | anpasswd \
172. 16. 0. 100 net mask 255. 255. 255. 0

H*

I configure CARP on the WAN/ I nternet side

ifconfig carp2 create

ifconfig carp2 vhid 2 carpdev en2 pass netpasswd \
192. 0. 2. 100 net mask 255. 255. 255.0

Configure fw2:

http://www.openbsd.org/fag/pf/carp.html (6 of 10)9/4/2011 10:04:50 AM

PF: Firewall Redundancy with CARP and pfsync

I enabl e preenption and group interface fail over
sysctl -w net.inet.carp.preenpt=1

1+

confi gure pfsync

i fconfig enl 10. 10.10.2 net mask 255. 255. 255.0
i fconfig pfsyncO syncdev enil

i fconfig pfsyncO up

HF H H -

I configure CARP on the LAN side

i fconfig carpl create

i fconfig carpl vhid 1 carpdev enD pass | anpasswd \
advskew 128 172. 16. 0. 100 net mask 255. 255.255.0

H*

I configure CARP on the WAN/ I nternet side

ifconfig carp2 create

ifconfig carp2 vhid 2 carpdev en2 pass netpasswd \
advskew 128 192.0. 2. 100 net mask 255. 255. 255. 0

Operational Issues
Some common operational issues encountered with CARP/pfsync.

Configuring CARP and pfsync During Boot

Since carp(4) and pfsync(4) are both types of network interfaces, they can be configured at boot by creating a
hostname.if(5) file. The netstart startup script will take care of creating the interface and configuring it.

Examples:

/etc/hostname.carpl
inet 172.16.0.100 255.255.255.0 172.16.0.255 vhid 1 carpdev emO \

pass lanpasswd

/etc/hostname. pfsyncO
up syncdev eml

Forcing Failover of the Master

There can be times when it's necessary to failover or demote the master node on purpose. Examples include taking
the master node down for maintenance or when troubleshooting a problem. The objective here isto gracefully fall
over traffic to one of the backup hosts so that users do not notice any impact.

To failover aparticular CARP group, shut down the carp(4) interface on the master node. Thiswill cause the
master to advertiseitself with an "infinite" advbase and advskew. The backup host(s) will see this and

http://www.openbsd.org/fag/pf/carp.html (7 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=netstart&sektion=8

PF: Firewall Redundancy with CARP and pfsync

immediately take over the role of master.
ifconfig carpl down

An dternative isto increase the advskewto avalue that's higher than the adv s kew on the backup host(s). This
will cause afailover but still allow the master to participate in the CARP group.

Another method of failover isto tweak the CARP demotion counter. The demotion counter is a measure of how
"ready" a host isto become master of a CARP group. For example, while a host isin the middle of booting up it'sa
bad ideafor it to become the CARP master until all interfaces have been configured, all network daemons have
been started, etc. Hosts advertising a high demotion value will be less preferred as the master.

A demotion counter is stored in each interface group that the CARP interface belongsto. By default, al CARP
interfaces are members of the "carp” interface group. The current value of a demotion counter can be viewed using
ifconfig(8):

ifconfig -g carp
carp: carp denote count O

In this exampl e the counter associated with the "carp” interface group is shown. When a CARP host advertises
itself on the network, it takes the sum of the demotion counters for each interface group the carp(4) interface
belongs to and advertises that value as its demotion value.

Now assume the following example. Two firewalls running CARP with the following CARP interfaces:

. carpl -- Accounting Department
. carp2 -- Regular Employees

. carp3-- Internet

. carp4-- DMZ

The objective isto failover just the carpl and carp2 groups to the secondary firewall.
First, assign each to a new interface group, in this case named "internal":

ifconfig carpl group internal

ifconfig carp2 group internal

ifconfig internal

carpl: flags=8843<UP, BROADCAST, RUNNI NG SI MPLEX, MULTI CAST> ntu 1500
carp: MASTER carpdev enD vhid 1 advbase 1 advskew 100
groups: carp internal
I net 10.0.0.1 netmask Oxffffff0OO0 broadcast 10.0.0. 255

carp2: flags=8843<UP, BROADCAST, RUNNI NG SI MPLEX, MULTI CAST> ntu 1500
carp: MASTER carpdev enl vhid 2 advbase 1 advskew 100
groups: carp internal
I net 10.0.1.1 netmask Oxffffff0OO0 broadcast 10.0.1.255

http://www.openbsd.org/fag/pf/carp.html (8 of 10)9/4/2011 10:04:50 AM

PF: Firewall Redundancy with CARP and pfsync

Now increase the demotion counter for the "internal” group using ifconfig(8):

ifconfig -g internal

internal: carp denote count O

ifconfig -g internal carpdenote 50
ifconfig -g internal

Internal: carp denote count 50

The firewall will now gracefully failover on the carpl and carp2 groups to the other firewall in the cluster while
still remaining the master on carp3 and carp4. If the other firewall started advertising itself with a demotion value
higher than 50, or if the other firewall stopped advertising altogether, then this firewall would again take over
mastership on carpl and carp2.

To fail back to the primary firewall, reverse the changes:

ifconfig -g internal -carpdenote 50
ifconfig -g internal
internal: carp denote count O

Network daemons such as OpenBGPD and sasyncd(8) make use of the demotion counter to ensure that the firewall
does not become master until BGP sessions become established and IPsec SAs are synchronized.

Ruleset Tips

Filter the physical interface. Asfar as PF is concerned, network traffic comes from the physical interface, not the
CARP virtua interface (i.e., car p0). So, write your rule sets accordingly. Don't forget that an interface namein a
PF rule can be either the name of a physical interface or an address associated with that interface. For example, this
rule could be correct:

pass in on fxp0 inet proto tcp fromany to carpO port 22
but replacing the f xp0 with car pO would not work as you desire.

DON'T forget topassproto carp andproto pfsync!

Other References

Please see these other sources for more information:

. carp(4)

. pfsync(4)

. ifconfig(8)

. hostname.if(5)
. pf.conf(5)

http://www.openbsd.org/fag/pf/carp.html (9 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sasyncd&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=carp&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=pfsync&sektion=4&manpath=OpenBSD+4.9
http://www.openbsd.org/cgi-bin/man.cgi?query=ifconfig&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=hostname.if&sektion=5
http://www.openbsd.org/cgi-bin/man.cgi?query=pf.conf&sektion=5&manpath=OpenBSD+4.9

PF: Firewall Redundancy with CARP and pfsync

. ifstated(8
. ifstated.conf(5)

[Previous: Authpf: User Shell for Authenticating Gateways] [Contents] [Next: Firewall for Home or Small Office]

& www @openbsd.org
$0penBSD: carp.html,v 1.28 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/carp.html (10 of 10)9/4/2011 10:04:50 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=ifstated&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=ifstated.conf&sektion=5
mailto:www@openbsd.org

PF: Example: Firewall for Home or Small Office

OpenBSD

[Previous: Firewall Redundancy with CARP and pfsync] [Contents]

PF. Example: Firewall for Home or Small Office

Table of Contents

. The Scenario
o The Network
o The Objective
o Preparation
. The Ruleset
o Macros
o Options
o Firewall Rules
. The Complete Ruleset

The Scenario

In this example, PF isrunning on an OpenBSD machine acting as afirewall and NAT gateway for a small network
in ahome or office. The overall objective isto provide Internet access to the network and to allow limited accessto
the firewall machine from the Internet, and expose an internal web server to the external Internet. This document
will go through a complete ruleset that does just that.

The Network

The network is setup like this:

[COWPL] [COW3]

SR S +----- oo - xO [OpenBSD] fxp0 -------- (Internet)

There are a number of computers on the internal network; the diagram shows three but the actual number is

http://www.openbsd.org/fag/pf/examplel.html (1 of 7)9/4/2011 10:04:52 AM

http://www.openbsd.org/index.html

PF: Example: Firewall for Home or Small Office

irrelevant. These computers are regular workstations used for web surfing, email, chatting, etc., except for COMP3
which isaso running a small web server. The internal network is using the 192.168.0.0 / 255.255.255.0 network
block.

The OpenBSD firewall is a Celeron 300 with two network cards: a 3com 3c905B (x| 0) and an Intel EtherExpress
Pro/100 (f xp0). Thefirewall has a cable connection to the Internet and is using NAT to share this connection with
the internal network. The | P address on the external interface is dynamically assigned by the Internet Service
Provider.

The Objective
The objectives are:

. Provide unrestricted Internet access to each internal computer.

. Usea"default deny" filter ruleset.

. Allow the following incoming traffic to the firewall from the Internet:
o SSH (TCP port 22): thiswill be used for external maintenance of the firewall machine.
o Auth/lIdent (TCP port 113): used by some services such as SMTP and IRC.
o ICMP Echo Requests: the ICMP packet type used by ping(8).

. Redirect TCP port 80 connection attempts (which are attempts to access a web server) to computer

COMP3. Also, permit TCP port 80 traffic destined for COMP3 through the firewall.

. Log filter statistics on the external interface.

. By default, reply witha TCP RST or ICMP Unreachable for blocked packets.

. Makethe ruleset as ssimple and easy to maintain as possible.

Preparation
This document assumes that the OpenBSD host has been properly configured to act as arouter, including verifying
I P networking setup, Internet connectivity, and setting the sysctl(3) variablesnet . i net . i p. f or war di ng and/

ornet.inet6.ip6.forwardi ngto"1l". Youmust also have enabled PF using pfctl(8) or by setting the
appropriate variablein/ et c/ rc. conf . | ocal . PF isenabled by default on OpenBSD 4.6 and newer releases.

The Ruleset

The following will step through aruleset that will accomplish the above goals.

Macros

The following macros are defined to make maintenance and reading of the ruleset easier:
Int_if="xl0"

tcp_services="{ 22, 113 }"
I cnp_types="echoreq"

http://www.openbsd.org/fag/pf/examplel.html (2 of 7)9/4/2011 10:04:52 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=ping&sektion=8
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=pfctl&sektion=8&manpath=OpenBSD+4.9

PF: Example: Firewall for Home or Small Office

conp3="192. 168. 0. 3"
Thefirst line defines the internal network interface that filtering will happen on. By defining them here, if we have
to move this system to another machine with different hardware, we can change only those two lines, and the rest
of the rule set will be still usable. (For this example, the external interface will be handled by using the egr ess
interface group. Thisisautomatically set on any interface holding a default route, in this case, fxp0). The second
and third lineslist the TCP port numbers of the services that will be opened up to the Internet (SSH and ident/auth)

and the ICMP packet types that will be accepted at the firewall machine. Finally, the last line defines the IP
address of COMP3.

Note: If the Internet connection required PPPoE, then filtering and NAT would have to take place on the pppoe0
interface and not on f xpO.

Options

The following two options will set the default response for bl ock filter rules and turn statistics logging "on" for
the external interface:

set bl ock-policy return
set loginterface fxpO

Every Unix system has a "loopback™ interface. It's avirtual network interface that is used by applications to talk to

each other inside the system. On OpenBSD, the loopback interface islo(4). It is considered best practice to disable
all filtering on loopback interfaces. Using set skip will accomplish this.

set skiponlo

Note that we are skipping for al | o interfaces, thisway, should we later add additional loopback interfaces, we
won't have to worry about altering this portion of our existing rulesfile.

Firewall Rules
We will start with rules to support the use of ftp-proxy(8) so that FTP clients on the local network can connect to

FTP servers on the Internet. Thisworks by dynamically inserting rules when an ftp connection is made. Thisis
done using an anchor:

anchor "ftp-proxy/*"
Now we will add the rule needed to redirect FTP connections so they are seen by ftp-proxy(8):

pass in quick on $int_if inet proto tcp to any port ftp \
rdr-to 127.0.0.1 port 8021

Thisrule will intercept FTP connectionsto port 21 and redirect them to an ftp-proxy(8) instance running on port
8021 and, through the use of the qui ck keyword, matching packets will not be further checked against the rest of

http://www.openbsd.org/fag/pf/examplel.html (3 of 7)9/4/2011 10:04:52 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=pppoe&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=lo&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+4.9

PF: Example: Firewall for Home or Small Office

the ruleset. If usersregularly connect to FTP servers on other ports, then alist should be used to specify the
destination port, for example:t o any port { 21, 2121 }.

Note that both the anchor and the ftp-proxy(8) redirect rule need to be located before any mat ch rulesfor NAT or
the ftp-proxy(8) will not work as expected.

Now we move on to some nat ch rules. By itself, amat ch rule doesn't determine whether or not a packet is
allowed to pass. Instead, packets matching this rule will have the parameters remembered; they will then be used in
any pass rules which handle these packets.

Thisis powerful: parameters such as NAT or queueing can be applied to certain classes of packet, and then access
permissions can be defined separately.

To perform NAT for the entire internal network the following mat ch ruleis used:

mat ch out on egress inet from!(egress:netwrk) to any nat-to
(egress: 0)

In this case, the"! (egr ess: net wor k) " could easily bereplaced by a"$i nt _i f : net wor k", but if you
added multiple internal interfaces, you would have to add additional NAT rules, whereas with this structure, NAT
will be handled on all protected interfaces.

Since the | P address on the external interface is assigned dynamically, parenthesis are placed around the translation
interface so that PF will notice when the address changes. The :0 suffix is used so that, if the external interface has
multiple addresses, only the first addressis used for translation.

Lastly, the protocol family i net (1Pv4) is specified. This avoids translating any i net 6 (1Pv6) packets which may
be received.

Now the rules to control access permissions. Start with the default deny:
bl ock in |og

At thispoint all traffic attempting to come into an interface will be blocked, even that from the internal network.
These packets will also be logged. Later rules will open up the firewall as per the objectives above as well as open
up any necessary virtual interfaces.

Keep in mind, pf can block traffic coming into or leaving out of an interface. It can ssimplify your life if you choose
to filter traffic in one direction, rather than trying to keep it straight when filtering some things in, and some things
out. In our case, we'll opt to filter the inbound traffic, but once the traffic is permitted into an interface, we won't
try to obstruct it leaving, so we will do the following:

pass out quick

By using qui ck, outbound packets can avoid being checked against the following rules, improving performance.

http://www.openbsd.org/fag/pf/examplel.html (4 of 7)9/4/2011 10:04:52 AM

http://www.openbsd.org/cgi-bin/man.cgi?query=ftp-proxy&sektion=8&manpath=OpenBSD+4.9

PF: Example: Firewall for Home or Small Office

It is good to use the spoofed address protection:
antispoof quick for { o $int_if }

Now open the ports used by those network services that will be available to the Internet. First, the traffic that is
destined to the firewall itself:

pass in on egress inet proto tcp fromany to (egress) \
port $tcp_services

Specifying the network portsin the macro $t cp_ser vi ces makesit simple to open additional servicesto the
Internet by simply editing the macro and reloading the ruleset. UDP services can also be opened up by creating a
$udp_ser vi ces macro and adding afilter rule, similar to the one above, that specifiespr ot o udp.

The next rule catches any attempts by someone on the Internet to connect to TCP port 80 on the firewall.
L egitimate attempts to access this port will be from users trying to access the network's web server. These
connection attempts need to be redirected to COMP3:

pass in on egress inet proto tcp to (egress) port 80 \
rdr-to $conp3 synproxy state

For an added bit of safety, we'll make use of the TCP SY N Proxy to further protect the web server.

ICMP traffic needs to be passed:
pass in inet proto icnp all icnp-type $icnp_types

Similar tothe $t cp_ser vi ces macro, the $i cnp_t ypes macro can easily be edited to change the types of
ICMP packets that will be allowed to reach the firewall. Note that this rule appliesto all network interfaces.

Now traffic must be passed to and from the internal network. We'll assume that the users on the internal network

know what they are doing and aren't going to be causing trouble. Thisis not necessarily avalid assumption; a
much more restrictive ruleset would be appropriate for many environments.

pass in on $int_if

TCP, UDP, and ICMP traffic is permitted to exit the firewall towards the Internet due to the earlier "pass out
line. State information is kept so that the returning packets will be passed back in through the firewall.

The Complete Ruleset

http://www.openbsd.org/fag/pf/examplel.html (5 of 7)9/4/2011 10:04:52 AM

PF: Example: Firewall for Home or Small Office

macr os
int _if="xl0"

tcp_services="{ 22, 113 }"
I cnp_types="echoreq"

conp3="192. 168. 0. 3"

options

set bl ock-policy return
set | oginterface fxpO
set skip onlo

FTP Proxy rul es

anchor "ftp-proxy/*"

pass in quick on $int_if inet proto tcp to any port ftp \
rdr-to 127.0.0.1 port 8021

match rul es
mat ch out on egress inet from!(egress) to any nat-to (egress:0)
filter rules

bl ock in |og
pass out quick

anti spoof quick for { lo $int_if }

pass in on egress inet proto tcp fromany to (egress) \
port $tcp_services

pass in on egress inet proto tcp to (egress) port 80 \
rdr-to $conp3 synproxy state

pass in inet proto icnp all icnp-type $icnp_types

pass in on $int_if

[Previous: Firewall Redundancy with CARP and pfsync] [Contents]

http://www.openbsd.org/fag/pf/examplel.html (6 of 7)9/4/2011 10:04:52 AM

PF: Example: Firewall for Home or Small Office

& www @openbsd.org
$OpenBSD: examplel.html,v 1.46 2011/05/01 12:57:11 nick Exp $

http://www.openbsd.org/fag/pf/examplel.html (7 of 7)9/4/2011 10:04:52 AM

mailto:www@openbsd.org

	openbsd.org
	PF: The OpenBSD Packet Filter
	PF: Getting Started
	PF: Lists and Macros
	PF: Tables
	PF: Packet Filtering
	PF: Network Address Translation (NAT)
	PF: Traffic Redirection (Port Forwarding)
	PF: Shortcuts For Creating Rulesets
	PF: Runtime Options
	PF: Anchors
	PF: Packet Queueing and Prioritization
	PF: Address Pools and Load Balancing
	PF: Packet Tagging (Policy Filtering)
	PF: Logging
	PF: Performance
	PF: Issues with FTP
	PF: Authpf: User Shell for Authenticating Gateways
	PF: Firewall Redundancy with CARP and pfsync
	PF: Example: Firewall for Home or Small Office

